Work-Energy Calculations

Study Lesson 2 of the Work, Energy and Power chapter at The Physics Classroom:
http://www.physicsclassroom.com/Class/energy/u5l2bc.html
For the following questions, begin with the work-energy equation, cancel terms, substitute and solve. 1. A glider is gliding through the air at a height of 416 meters with a speed of $45.2 \mathrm{~m} / \mathrm{s}$. The glider dives to a height of 278 meters. Determine the glider's new speed.
$\mathrm{KE}_{\mathbf{i}}+\mathrm{PE}_{\mathbf{i}}+\mathrm{Wext} \quad=\mathrm{KE}_{\mathrm{f}}+\quad \mathrm{PE}_{\mathrm{f}}$

2. A box with mass \mathbf{m} is sliding along on a frictionfree surface at $9.87 \mathrm{~m} / \mathrm{s}$ at a height of 1.81 m . It travels down the hill and then up another hill.
a. Find the speed at the bottom of the hill.
$\mathrm{KE}_{\mathbf{i}}+\mathrm{PE}_{\mathbf{i}}+\mathrm{W}_{\mathbf{e x t}}=\mathrm{KE}_{\mathbf{f}}+\mathrm{PE}_{\mathrm{f}}$
b. Find the maximum vertical height to which the box will rise on the opposite hill.

$$
\mathrm{KE}_{\mathbf{i}}+\mathrm{PE}_{\mathbf{i}}+\mathrm{Wext}_{\mathbf{e x t}}=\mathrm{KE}_{\mathbf{f}}+\quad \mathrm{PE}_{\mathbf{f}}
$$

3. A 1423-kg car is moving along a level highway with a speed of $26.4 \mathrm{~m} / \mathrm{s}$. The driver takes the foot off the accelerator and the car experiences a retarding force of $901-\mathrm{N}$ over a distance of 106 m . Determine the speed of the car after traveling this distance.

$$
\mathrm{KE}_{\mathbf{i}}+\mathrm{PE}_{\mathbf{i}}+\mathbf{W}_{\mathbf{e x t}} \quad=\mathrm{KE}_{\mathbf{f}}+\quad \mathrm{PE}_{\mathbf{f}}
$$

4. A sledder starts from rest atop a $5.0-\mathrm{m}$ high hill (A). She sleds to the bottom and up to the top of the adjacent $3.0-\mathrm{m}$ high hill. How fast is the sledder going at point B ? Ignore friction.

$$
\mathrm{KE}_{\mathbf{i}}+\mathrm{PE}_{\mathbf{i}}+\mathbf{W}_{\mathbf{e x t}}=\mathrm{KE}_{\mathbf{f}}+\mathrm{PE}_{\mathbf{f}}
$$

Work, Energy, and Power

5. A 4768-kg roller coaster train full of riders approaches the loading dock at a speed of $17.1 \mathrm{~m} / \mathrm{s}$. It is abruptly decelerated to a speed of $2.2 \mathrm{~m} / \mathrm{s}$ over a distance of 13.6 m . Determine the retarding force that acts upon the roller coaster cars.
$\mathrm{KE}_{\mathbf{i}}+\mathrm{PE}_{\mathbf{i}}+\mathrm{W}_{\mathrm{ext}} \quad=\mathrm{KE}_{\mathrm{f}}+\quad \mathrm{PE}_{\mathrm{f}}$
6. A catcher's mitt recoils a distance of 12.9 cm in bringing a 142 -gram baseball to a stop. If the applied force is 588 N , then what was the speed of the baseball at the moment of contact with the catcher's mitt?

$$
\mathrm{KE}_{\mathbf{i}}+\mathrm{PE}_{\mathbf{i}}+\mathbf{W e x t}+\mathrm{KE}_{\mathbf{f}}+\quad \mathrm{PE}_{\mathbf{f}}
$$

7. An unknown force is applied to a 12 kg mass. The force acts at an angle of 30 degrees above the horizontal. Determine the force acting if the force acts for a horizontal displacement of 22 meters and increases the 12 kg mass's speed from $11 \mathrm{~m} / \mathrm{s}$ to $26 \mathrm{~m} / \mathrm{s}$.
$\mathrm{KE}_{\mathbf{i}}+\mathrm{PE}_{\mathbf{i}}+\mathrm{Wext}+\mathrm{KE}_{f}+\quad \mathrm{PE}_{f}$
8. A physics teacher exerts a force upon a $3.29-\mathrm{kg}$ pile of snow to both lift it and set it into motion. The snow leaves the shovel with a speed of $2.94 \mathrm{~m} / \mathrm{s}$ at a height of 0.562 m . Determine the work done upon the pile of snow.
$\mathrm{KE}_{\mathbf{i}}+\mathrm{PE}_{\mathbf{i}}+\mathrm{Wext} \quad=\mathrm{KE}_{\mathrm{f}}+\quad+\quad \mathrm{PE}_{\mathrm{f}}$
9. A 250.-gram cart starts from rest and rolls down an inclined plane from a height of 0.541 m . Determine its speed at a height of 0.127 m above the bottom of the incline.
$\mathrm{KE}_{\mathbf{i}}+\mathrm{PE}_{\mathbf{i}}+\mathrm{W}_{\mathbf{e x t}} \quad=\mathrm{KE}_{\mathbf{f}}+\quad \mathrm{PE}_{\mathbf{f}}$
10. A $4357-\mathrm{kg}$ roller coaster car starts from rest at the top of a $36.5-\mathrm{m}$ high track. Determine the speed of the car at the top of a loop that is 10.8 m high.

$$
\mathrm{KE}_{\mathbf{i}}+\mathrm{PE}_{\mathbf{i}}+\mathrm{W}_{\mathbf{e x t}}=\mathrm{KE}_{\mathbf{f}}+\quad \mathrm{PE}_{\mathbf{f}}
$$

