Name_

Heat of Formation and Bond Enthalpy

Read from Lesson 2 in the Chemistry Tutorial Section, Chapter 12 of The Physics Classroom:Part c: Heat of FormationPart d: Bond Enthalpy and ΔH

Part 1: Heat of Formation

In chemistry, the **heat of formation** (also called **enthalpy of formation**, symbolized as $\Delta H_{f^{\circ}}$) is the amount of energy released or absorbed when **one mole of a compound** is formed from its **elements in their standard states** under standard conditions (25°C and 1 atmosphere of pressure).

Think of it like this: if you could build a compound from scratch using the pure elements from the periodic table, the heat of formation tells you how much energy that process would take or give off.

For example:

The formation of water from hydrogen and oxygen:

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$$

The formation of butane from carbon and hydrogen: $4 C (s) + 5H_2 (g) \rightarrow C_4H_{10}(g)$

Other compounds' <u>heat of</u> <u>formation</u> values can be found in the reference section of the Chemistry Tutorial. This concept is fundamental to understanding chemical

energy changes and plays a crucial role in calculating reaction enthalpies using Hess's Law.

Example:

Write a reaction for the combustion of butane, C_4H_{10} .:

Calculate the $\Delta H_{\text{combustion}}$ for the combustion reaction.

(look up heats of formation from the reference table)

 $\Delta H_{combustion} = (8 *H_{f}^{\circ} \text{ of } CO_{2} + 10^{*} H_{f}^{\circ} \text{ of } H_{2}O) - (2*H_{f}^{\circ} \text{ of } C_{4}H_{10} + 13^{*} H_{f}^{\circ} \text{ of } O_{2})$ $\Delta H_{combustion} = [(8 * -393.5 \text{ kJ}) + (10^{*} - 241.8 \text{ kJ})] - [(2^{*} - 124.7 \text{ kJ/mol} + (13^{*} 0 \text{ kJ})] = -5566 \text{ kJ} - (-249.4) = -5317 \text{ kJ} \text{ (for } 2 \text{ moles)}$ $\Delta H_{combustion} \text{ for butane} = 2658 \text{ kJ/mol}$

Questions

1. Identify the standard state (solid, liquid or gas) for the following elements:

a. carbon	d. argon
b. nitrogen	e. mercury
c. bromine	f. iron

2. Use the <u>heat of formation</u> values found in the reference section of the Chemistry Tutorial to find the standard enthalpy of formation, ΔH_{f}° for the following:

1 5	Ũ
a. NaCl(s)	e. $Fe_2O_3(s)$
b. NH ₃ (g)	f. Bi(s)
c. $H_3PO_4(1)$	g. $UF_6(s)$
d. O ₃ (g)	h. $CCl_2F_2(g)$

What's in

The enthalpy change of any reaction is the sum of the ΔH_f° values of all the product compounds minus the sum of the ΔH_f° of all reactant compounds. In equation form:

 $\Delta H_f^{o} = -285.8 \text{ kJ/mol}$

 $\Delta H_f^{o} = -124.7 \text{ kJ/mol}$

 $\Delta H_{reaction} = \sum \Delta H_{f}^{\circ}_{products} - \sum \Delta H_{f}^{\circ}_{reactants}$

 $2 C_4 H_{10}(g) + 13 O_2(g) \rightarrow 8 CO_2(g) + 10 H_2O(g)$

 $\Delta H_{reaction} = \sum \Delta H_{f}^{\circ}_{products} - \sum \Delta H_{f}^{\circ}_{reactants}$

©The Physics Classroom. If found on another website or portal that isn't password protected, report at physicsclassroom.com/copyright.

Thermochemistry

3. Use the <u>heat of formation</u> values found in the reference section of the Chemistry Tutorial to determine the enthalpy change for the following reactions.

a. 4 NH₃ (g) + 7 O₂(g) \rightarrow 4 NO₂ (g) + 6 H₂O(g)

b. HNO₃(aq)+ NaOH(s) \rightarrow NaNO₃(aq) + H₂O(l)

4. The combustion reaction of acetone is $C_3H_6O(l) + 4O_2(g) \rightarrow 3CO_2(g) + 3H_2O(l) \Delta H_{combustion}$ is -1790 kJ/mol. Use this and the <u>heat of formation</u> values found in the reference section of the Chemistry Tutorial to determine the heat of formation of acetone.

Part 2: Bond Enthalpy

Bond enthalpy, or **bond dissociation energy**, is the energy required to break **one mole** of a specific bond in a gas-phase molecule. It reflects bond strength—**stronger bonds have higher bond enthalpies**, as they require more energy to break. Chemists use bond enthalpies to predict energy changes in chemical reactions. By comparing bond energies in reactants and products, we can estimate whether a reaction absorbs or releases energy.

Using Bond Enthalpy to Calculate ∆H Values

1. Conduct a Bond Inventory

Identify the bonds being **broken** and **formed** in the reaction. Determine the quantity of each bond type. Use Lewis electron dot diagrams to classify bonds as single, double, or triple.

2. Look Up Bond Enthalpy Values

Refer to the <u>Bond Enthalpy Table</u> found in the reference section of the Chemistry Tutorial to find the enthalpy values for each bond being broken and formed.

3. Calculate the ΔH for Bond Breaking

For each bond broken, multiply the number of bonds by the bond enthalpy. Sum all values to determine ΔH for the bond-breaking steps. This value will be positive, as breaking bonds requires energy.

Thermochemistry

4. Calculate the ΔH for Bond Forming

Bond formation is an exothermic process. The ΔH for forming bonds is negative—simply write the bond enthalpy with a negative sign. Multiply the number of bonds formed by their respective bond enthalpy values, then sum these negative values to determine ΔH for bond formation.

5. Determine the Overall Enthalpy Change

Add the Δ H for bond breaking (positive) to the Δ H for bond forming (negative). The result is the overall enthalpy change (Δ H), indicating whether the reaction is endothermic or exothermic.

For example: Refer to the <u>Bond Enthalpy Table</u> found in the reference section of the Chemistry Tutorial to find the enthalpy values for each bond being broken and formed for this reaction:

 $2 \text{ CH}_3\text{OH}(l) + 3 \text{ O}_2(g) \rightarrow 2 \text{ CO}_2(g) + 4 \text{ H}_2\text{O}(g)$

1. Conduct a Bond Inventory: Identify the bonds being broken and formed in the reaction Bonds broken:

CH₃OH $H = \begin{matrix} H \\ I \\ I \\ I \end{matrix}$ has 3 C-H bonds, 1 C-O bond, and 1 O-H bond

$$O_2$$
 O_2 has 1 O=O bond

Bonds formed:

$$CO_2$$
 $\mathbf{\ddot{o}=c=\ddot{o}}$ has 2 C=O bonds

H₂O
$$H - O - H$$
 has 2 O-H bonds

2 Look Up Bond Enthalpy Values on the Bond Enthalpy Table C-H (413 kJ) O-H (467 kJ) C-O (358 kJ) O=O (495 kJ) C=O (745 kJ) Calculate the Δ H for Bond Breaking 3. CH₃OH: 3 C-H (3*413 kJ) + C-O (358 kJ) +O-H (467 kJ) = 2064 kJ 2 CH₃OH (4128 kJ) $O_2: O=O(495 \text{ kJ})$ 3 O₂ (1485 kJ) Calculate the ΔH for Bond Forming 4. CO₂: 2 C=O (2*745 kJ) = 1490 kJ 2 CO₂ (2980 kJ) H₂O : 2 O-H (2*467 kJ) = 934 kJ 4 H₂O (3736 kJ)

5. Determine the Overall Enthalpy Change $\Delta H_{rxn} = (+bonds \ breaking) + (-bonds \ forming) = (4128 \ kJ + 1485 \ kJ) + (-2980 \ kJ - 3736 \ kJ) = -1103 \ kJ$ $\uparrow \ reactants \uparrow \qquad \uparrow \ products \uparrow$

Thermochemistry

Questions

Use the <u>Bond Enthalpy Table</u> found in the reference section of the Chemistry Tutorial to determine the heat of reaction for the following reactions.

 $1. \quad N_2H_4 \rightarrow N_2 + 2 \ H_2$

2. $2 H_2O_2 \rightarrow 2 H_2O + O_2$

3. $CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$

4. $C_3H_6O + 4O_2 \rightarrow 3CO_2 + 3H_2O$