Kinetic Energy

Lesson Notes

Learning Outcomes

- What is kinetic energy?
- How can you know if an object has kinetic energy?
- What is the kinetic energy formula and how do you use it?

Meaning of Kinetic Energy

Kinetic energy is the energy possessed by an object as a result of its motion.
A moving object possesses kinetic energy regardless of ...
... which direction it is moving.
... whether it is speeding up or slowing down.
... how high above the ground it is.

The Kinetic Energy Equation:

The amount of kinetic energy (KE) an object possesses depends upon ...

- ... how much mass is moving (m)
- ... how fast the mass is moving (v)

$$
\mathrm{KE}=1 / 2 \cdot \mathrm{~m} \cdot \mathrm{v}^{2}
$$

Unit for KE: Joule (abbreviated J); $1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$

The KE Equation as a Guide to Thinking Qualitatively

From the equation for kinetic energy, we would reason that ...

- If speed increases ... then KE increases.
- If speed decreases ... then KE decreases.
- If speed is constant ... then KE is constant.
- Where speed is greatest ... KE is greatest.
- Where speed is least ... KE is least.

Whatever the speed does, the kinetic energy does the same.

The KE Equation as a Guide to Thinking Proportionally

The kinetic energy (KE) of an object is directly proportional to the square of the object's speed (v^{2}). And so ...

- If the \mathbf{v} is \uparrow by a factor of 2 (doubled), then the KE is \uparrow by a factor of 4 (quadrupled).
- If the v is \uparrow by a factor of 3 (tripled), then the KE is \uparrow by a factor of 9 .
- If the v is \downarrow by a factor of 2 (halved), then the KE is \downarrow by a factor of 4 (quartered).

Using the KE Equation in Solving Algebraic Problems

Basic Algebra: The KE equation has three variables: KE, m, and \mathbf{v}. If you know the value of 2 variables, you can calculate the value of the $3^{\text {rd }}$ variable.

Three Forms of the KE Equation

1. Solving for Kinetic Energy (KE) ...

Use KE = $1 / 2 \cdot \mathrm{~m} \cdot \mathrm{v}^{2}$
2. Solving for Mass (m) ...

Use $m=(2 \cdot K E) /\left(v^{2}\right)$
3. Solving for Speed (v) ...

Use: $\mathrm{v}=\sqrt{ }[(2 \cdot \mathrm{KE}) /(\mathrm{m})]$

Example: Calculating Speed
A $4.0-\mathrm{kg}$ object has 72 J of kinetic energy. Determine its speed.

Solution:

Given: $\mathrm{KE}=72 \mathrm{~J}, \mathrm{~m}=4.0 \mathrm{~kg} \quad$ Determine v
Equation:

$$
\mathrm{KE}=1 / 2 \cdot \mathrm{~m} \cdot \mathrm{v}^{2}
$$

Substitute:
$72 \mathrm{~J}=1 / 2 \cdot(4.0 \mathrm{~kg}) \cdot \mathrm{v}^{2}$
Simplify (and drop units):
$72=2.0 \cdot v^{2}$
Divide each side by 2.0:
$36=v^{2}$
Take the $\sqrt{ }$ of each side:
$6.0 \mathrm{~m} / \mathrm{s}=\mathrm{v}$

