Speed of a Wave
 Lesson Notes

Learning Outcomes

- What is wave speed and how is it calculated?
- What variables affect the speed at which waves move?

What is Wave Speed?

Speed describes how fast (or slow) and object moves._ "divided by"
Mathematically, speed is the distance traveled per time of travel.

$$
\text { speed }=\frac{\text { distance traveled }}{\text { time of travel }} \quad v=\frac{d}{t}
$$

Wave speed is the distance a crest of a wave travels per given amount of time. Consider a wave that travels 20.0 m in 10.0 seconds.

A faster wave would cover a greater distance in the same amount of time.

Accounting for Echoes and Wave Reflection

A wave is known to reflect when it confronts an obstacle or the end of its medium.

Practice:
Noah stands 170 meters away from a steep canyon wall. He shouts "Hey" and hears the echo of his voice 1.0 second later. What is the speed of the wave?

An Experiment with Wave Speed

A wave is shook into a wire using varying frequencies for two different tension values.
Wavelength and speeds are measured/calculated. What does the data tell us?

Trial	Tension (N)	Frequency (Hz)	Wavelength (m)	Speed $(\mathrm{m} / \mathrm{s})$
Only 2 speeds				
	2.0	4.05	4.00	16.2
2	2.0	8.03	2.00	16.1
3	2.0	16.2	1.00	16.2
What happened between trials 3 and 4 that caused the v to change?				
4	5.0	12.8	2.00	25.6
5	5.0	19.3	1.33	25.7
6	5.0	25.5	1.00	25.5

Factors Affecting Wave Speed

Properties of the Wave vs. Properties of the Medium

- The speed at which mechanical waves travel through a medium is NOT affected by the properties of the medium.
- The speed of a mechanical wave depends upon the properties of the medium through which it is moving.

Wave Speed and Medium Properties

Example 1: Speed of Sound Waves in Air

The speed of sound waves (v) in air depends on the Celsius temperature of air (T). A simplified formula is:

$$
v=331 \mathrm{~m} / \mathrm{s}+0.60 * T
$$

Example 2: Speed of Waves in a Guitar String

The speed of waves (v) in a string or wire depends on the tension of the string (T) and the linear density of the string (μ). The formula is:

$$
v=\sqrt{ }(T / \mu)
$$

