## Pendulum Motion

## Lesson Notes

## Learning Outcomes

- How does the force, acceleration, position, velocity, kinetic energy, and potential energy change over the course of a pendulum's path?
- What factors affect the period of a pendulum and how?


## The Simple Pendulum

- A simple pendulum consists of a relatively massive object (known as the bob) suspended from a light string that is secured to a support.
- The bob swings back and forth along a circular arc about a fixed position.
- The fixed position is the resting position; it is the position of the bob when the string is vertical.
- The pendulum's motion is an example of periodic motion repeating (occurring over and over again) and regular (the


Resting Position period of each cycle is the same).

## Free-Body Diagrams

Two dominant forces act upon the bob - the force of gravity ( $\mathrm{F}_{\text {grav }}$ ) and tension ( $\mathrm{F}_{\text {tens }}$ ).

- Fgrav: constant magnitude ( $\mathrm{m} \cdot 9.8 \mathrm{~N} / \mathrm{kg}$ ); always directed downward.
- Ftens: variable magnitude; always directed upwards towards pivot point.



## Acceleration and Net Force

- A net force ( $\mathrm{F}_{\text {net }}$ ) causes an acceleration (a) and an acceleration requires a net force.
- The direction of the $\mathrm{F}_{\text {net }}$ and a vectors are the same.
- There is a centripetal a and Fnet since the object is moving along a circular path.
- There is a tangential a and Fnet since the object is speeding up and slowing down as it moves towards and away from the resting position.
A to B
$B$ to C

Slowing Down
C to B

Speeding Up
Slowing Down


## Force Analysis

A $\perp$ axes system is drawn that is directed tangential to the circular arc and towards the pivot point (perpendicular). $\mathrm{F}_{\text {grav }}$ is resolved into two components along these axes.


$$
v=0 \ldots F_{\text {perp }}=F_{\text {tens }}
$$

$F_{\text {tang }}$ is the restoring force

$v \neq 0 \ldots F_{\text {tens }}>F_{\text {perp }}$
$F_{\text {tang }}$ is the restoring force

$v \neq 0 \ldots F_{\text {tens }}>F_{\text {perp }}$
No restoring force

## Position vs. Time

A pendulum bob's position varies with time in a sinusoidal manner.

$\mathbf{B}$ to $\mathbf{C}$ : moving from rest to extreme right $\longrightarrow$ Slowing down
$\mathbf{C}$ to $\mathbf{B}$ : moving from extreme right to rest $\longrightarrow$ Speeding up
$\mathbf{B}$ to $\mathbf{A}$ : moving from rest to extreme left $\longrightarrow$ Slowing down
$\mathbf{A}$ to $\mathbf{B}$ : moving from extreme left to rest $\longrightarrow$ Speeding up
Velocity vs. Time
A v-t graph becomes sensible when you comprehend the p-t graph.


Energy Analysis of a Pendulum

- If we ignore damping effects, the only forces doing work on a pendulum is gravity.
- Being a conservative force, Fgrav does not remove mechanical energy from the system.

$K E \uparrow$ and $P E \downarrow$

B to C

$K E \downarrow$ and $P E \uparrow$

C to B

$K E \uparrow$ and $P E \downarrow$

B to A

$K E \downarrow$ and $P E \uparrow$

## Energy Bar Charts

Energy bar charts are conceptual tools used to convey the energy stores of a system and how they change over time.

Note the following patterns:

- As the bob moves towards rest position: PE $\downarrow, \mathrm{KE} \uparrow$.
- As the bob moves away from rest position: PE $\uparrow, \mathrm{KE} \downarrow$.
- While KE and PE change, the sum of the two forms remain constant.
(The above neglects damping effects.)


## Period of a Pendulum

- Period (T): The time to complete a full cycle of vibration.
- The pendulum swings back and forth with the same period cycle after cycle.
- A common Physics lab involves investigating the effect of string length, bob mass, and swing angle upon the period.
- A pendulum's period ( $T$ ) depends upon the string length ( L ). In fact, $T \propto \sqrt{ } \mathrm{~L}$.
- Doubling $L$ causes $T$ to increase by $\sqrt{ } 2$.
- Tripling L causes $T$ to increase by $\sqrt{ } 3$.
- Quadrupling L causes T to increase by $\sqrt{ } 4$.
- Halving $L$ causes $T$ to decrease by $\sqrt{ } 2$ (i.e. $1 / \sqrt{ } 2$ of the original value).

The formula relating $T$ to $L$ is: $\quad T=2 \cdot \pi \sqrt{ }(L / g)$ where $g=9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.

