Vibrating Mass on a Spring Lesson Notes

Learning Outcomes

• How does the force, acceleration, speed, position, and kinetic and potential energy of a vibrating mass on a spring change over the course of a cycle?

Hooke's Law

- In the absence of a force, a spring assumes a natural length.
- When a force is applied (e.g., by adding a mass), the spring stretches (or compresses) by a distance of x.
- The spring exerts a force in the opposite direction as the direction of its stretch (or compression).
- Hooke's Law states the relationship between the amount of stretch and the amount of force applied by the spring.

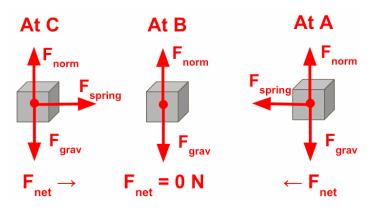
 $F_{spring} = -k \cdot x$

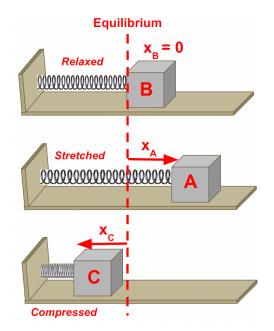
k = spring constant (N/m)

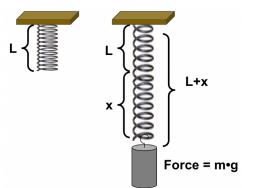
x = displacement

Force Analysis – Horizontal Springs

- Consider a mass attached to a **relaxed** spring on a friction-free air table.
- If the spring is stretched and then released, it will begin vibrating back and forth between its two extremes.



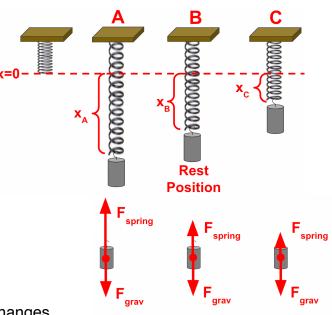




Force Analysis – Vertical Springs

- A spring is suspended vertically and assumes its unstretched length.
- A mass is hung on the spring and lowered to a **rest position**. The spring is stretched to position B.
- The mass is pulled to A and released from rest. It oscillates back and forth between positions A and C.

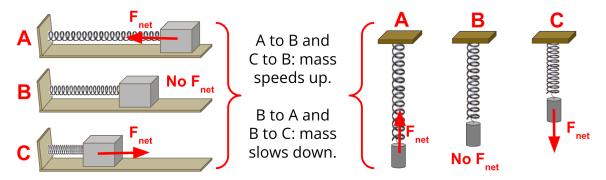
Fgrav:always downFspring: always upFnet:always towards B (restoring force)



Speed and Acceleration

As the mass vibrates back and forth, its speed changes.

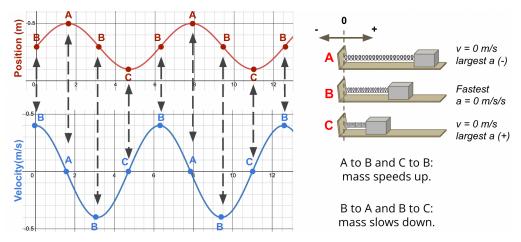
The speed is 0 m/s at the extreme positions and a maximum value at the equilibrium position.



The acceleration is in the direction of and proportional to the net force (restoring force). Like F_{net} , acceleration is always directed towards the equilibrium position. And like F_{net} , acceleration is largest at the extremes and 0 m/s/s at the equilibrium position.

Sinusoidal Nature of a Mass on a Spring

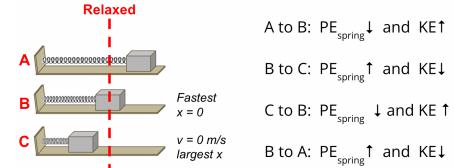
Position and velocity (and more) change periodically as a function of the sine of time.



Energy Analysis (Horizontal Springs)

As the mass vibrates back and forth between extremes, energy is changing from **elastic potential energy** (**PE**_{spring}) and **kinetic energy** (**KE**).

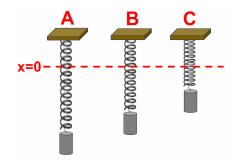
- Kinetic energy (speed dependent) is greatest at position B.
- Elastic potential energy (stretch/compression dependent) is greatest at positions A and C.



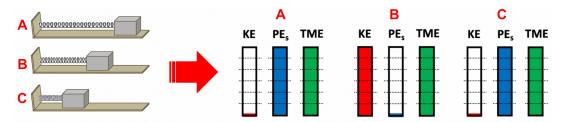
Energy Analysis (Vertical Springs)

As a mass on a vertical spring vibrates between extremes, energy is changing between gravitational potential energy (PE_{grav}), elastic potential energy (PE_{spring}) and kinetic energy (KE).

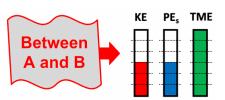
- Kinetic energy (speed dependent) is greatest at position B.
- Gravitational potential energy (height dependent) is greatest at positions C.
- Elastic potential energy (stretch/compression dependent) is greatest at position A and least at position C.



B to A: $PE_{grav} \downarrow$, $PE_{grav} \downarrow$, and $KE \downarrow$



As the **kinetic energy** (**KE**) increases, the **elastic potential energy** (**PE**_{spring}) decreases, but the **total mechanical energy** (**TME**) remains constant. And vice versa.



Period and Frequency

The period (T) of vibration of a spring-mass system depends upon the spring constant (k) of the spring and the mass (m) of the vibrating object.

 $T=2\bullet\pi\bullet\sqrt{(m/k)}$

More massive objects will have longer periods. Stiffer springs (larger k) will have shorter periods.

The frequency (f) of vibration is the reciprocal of the period and calculated as ...

 $f = 1/T = \sqrt{(k/m)} / 2 \cdot \pi$