The Anatomy of a Wave
 Lesson Notes

Learning Outcomes

- What is wavelength and how can it be determined from a wave pattern?
- What is amplitude and how can it be determined from a wave pattern?

Transverse Wave: A Snapshot in Time

The back-and-forth vibrations of the medium result in a recognizable pattern that repeats itself across space.

- Wavelength ($\boldsymbol{\lambda}$): distance from a crest to an adjacent crest
- Amplitude (A): distance from a rest to a crest

Longitudinal Wave: A Snapshot in Time

Suppose a tuning fork is used to force air inside of a pipe to vibrate back and forth about a fixed position.

- Wavelength $(\boldsymbol{\lambda})$: length of the repeating pattern (distance from compression to adjacent compression)
- Amplitude (A): maximum displacement of a particle from rest

Wavelength is ...

... the distance from a crest to the next adjacent crest.
... the length of the repeating pattern of a wave.
... the distance from a point on the pattern to the next corresponding point in the next cycle of the pattern.

\# of $1 / 4$ wavelengths: 9

Know this:

crest to rest $\Rightarrow 1 / 4$ wave rest to trough $\Rightarrow 1 / 4$ wave
trough to rest $\Rightarrow 1 / 4$ wave

$$
\text { rest to crest } \Rightarrow 1 / 4 \text { wave }
$$

Counting Waves

If you know what a wavelength looks like, then you can count the \# of wave(lengths) within a given pattern:

Diagram C

Determining $\boldsymbol{\lambda}$ from a Pattern

If you're given the wave pattern in a rope and the length of the rope, then you can determine the wavelength:

The wave pattern at the left is in a $6.0-\mathrm{m}$ long rope. The wavelength is ...
$6.0 \mathrm{~m}=1.5 \lambda \Rightarrow \lambda=4.0 \mathrm{~m}$

The wave pattern at the left is in a $5.0-\mathrm{m}$ long rope. The wavelength is ...
$5.0 \mathrm{~m}=2.5 \lambda \Rightarrow \lambda=2.0 \mathrm{~m}$

Amplitude is ...

... the distance from rest to crest.
\ldots the height of a wave (measured upward from rest).
... the maximum upward or downward displacement from rest that a particle experiences during any cycle of vibration.

Most common error: measuring twice the distance.

Amplitude-Energy Relationship

- A wave is an energy transport phenomenon.
- The amplitude of motion of the particles of the medium depends on how much energy is put into the wave at the source.

High Energy

Energy \propto Amplitude $^{2} \Rightarrow E \propto A^{2}$

Double $A \Rightarrow E$ increases by $x 4$
Triple $A \Rightarrow E$ increases by $x 9$
Quadruple $A \Rightarrow E$ increases by $x 16$

	\mathbf{A}	\mathbf{E}
1	1 unit	2 unit
2	2 units	8 units
3	3 units	18 units
4	4 units	32 units

