The Anatomy of a Wave Lesson Notes

Learning Outcomes

- What is wavelength and how can it be determined from a wave pattern?
- What is amplitude and how can it be determined from a wave pattern?

Transverse Wave: A Snapshot in Time

The back-and-forth vibrations of the medium result in a recognizable pattern that repeats itself across space.

- Wavelength (λ): distance from a crest to an adjacent crest
- Amplitude (A): distance from a rest to a crest

Longitudinal Wave: A Snapshot in Time

Suppose a tuning fork is used to force air inside of a pipe to vibrate back and forth about a fixed position.

- Wavelength (λ): length of the repeating pattern (distance from compression to adjacent compression)
- Amplitude (A): maximum displacement of a particle from rest

Wavelength is ...

- ... the distance from a crest to the next adjacent crest.
- ... the length of the repeating pattern of a wave.
- ... the distance from a point on the pattern to the next corresponding point in the next cycle of the pattern.

of 1/4 wavelengths: 9

Know this:

crest to rest \Rightarrow 1/4 wave trough to rest \Rightarrow 1/4 wave rest to trough \Rightarrow 1/4 wave rest to crest \Rightarrow 1/4 wave

Counting Waves

If you know what a wavelength looks like, then you can count the # of wave(lengths) within a given pattern:

Determining λ from a Pattern

If you're given the wave pattern in a rope and the length of the rope, then you can determine the wavelength:

Amplitude is ...

- ... the distance from rest to crest.
- ... the height of a wave (measured upward from rest).
- ... the maximum upward or downward displacement from rest that a particle experiences during any cycle of vibration.

Most common error: measuring twice the distance.

Amplitude-Energy Relationship

- A wave is an energy transport phenomenon.
- The amplitude of motion of the particles of the medium depends on how much energy is put into the wave at the source.

Energy \propto Amplitude² \Rightarrow **E** \propto **A**²

Double A \Rightarrow E increases by x4 Triple A \Rightarrow E increases by x9

Quadruple $A \Rightarrow E$ increases by x16

	Α	E
1	1 unit	2 unit
2	2 units	8 units
3	3 units	18 units
4	4 units	32 units