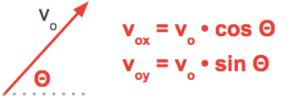
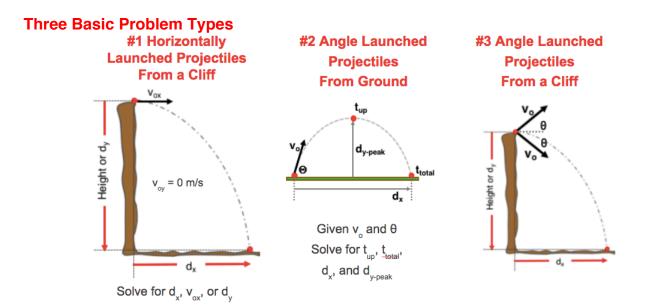

Mathematics of a Projectiles Lesson Notes


Kinematic Equations for Projectile Motion

Kinematics equations apply to objects moving along straight lines with a uniform acceleration between an initial and a final state.

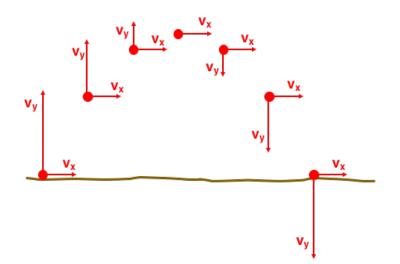

The Original Velocity

Most projectile problems provide information about the original velocity (v_o) and the angle (θ). You must begin by resolving v_o into x- and y-components (v_{ox} and v_{oy}).

where Θ is the launch angle measured with the ground.

NEVER use values of v_0 and Θ in kinematic equations.

Projectile Velocity and Acceleration


A projectile does not accelerate horizontally.

A projectile accelerates vertically at - 9.8 m/s/s (the - means down). So v_{fy} for any time t can be calculated ...

The final y-velocity (v_{fy}) is equal and opposite the initial y-velocity (v_{oy}) :

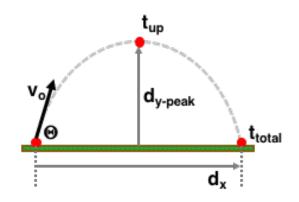
 $V_{fy} = -V_{oy}$

This fact can be used in many calculations.

At the highest point ("peak"), the y-velocity is 0 m/s. This fact can be used in many calculations.

Angle-Launched Projectiles - Time

For angle-launched projectiles, there's a mathematical relationship between the original y-velocity (v_{oy}), the time to rise up to the peak (t_{up}) and the total time in the air (t_{total}).


From $v_{fy} = v_{oy} - 9.8 \cdot t$, you can derive ...

0 m/s = v_{oy} - (9.8m/s/s)•t_{up} t_{up} = v_{oy} / 9.8

And since $t_{up} = t_{down}$, $t_{total} = 2 \cdot t_{up}$.

Angle-Launched Projectiles - Displacement

The t_{up} value refers to the time to travel through $\frac{1}{2}$ the trajectory ... to the highest point. The t_{total} value refers to the time to travel up and down - the full trajectory. Knowing $t_{up} = v_{oy} / 9.8$, you can calculate the height of the object at the peak (dy-peak) and the total x-displacement (dx) upon landing on the ground.

Height at Peak

Use $d_y = [(v_{oy} + v_{fy})/2] \cdot t$ where $v_{fy} = 0$ m/s. $d_{y-peak} = v_{oy}/2 \cdot t_{up}$

Horizontal Displacement

Use $d_x = v_{ox} \cdot t$ where t is total time (t_{total}). $d_x = v_{ox} \cdot t_{total}$