Harmonic Frequencies and Standing Waves Lesson Notes

Learning Outcomes

- What is a harmonic and how are they related to standing waves?
- What are the mathematical patterns derived from standing wave patterns?

Standing Wave Formation

When a traveling wave is confined to a small space, a regular and repeating pattern can be observed in the medium if vibrated *at just the right frequency*.

Chladni Plates Demonstration

A metal plate is firmly mounted to a lab bench, covered with salt, and strummed with a violin bow.

The plate vibrates with one of its natural or harmonic frequencies and the salt forms a pattern.

The procedure is repeated and a new pattern is observed.

Each harmonic frequency is associate with a standing wave pattern with nodes (salt lines) and antinodes.

Each pattern represents the **lowest energy**, **favored mode of vibration** of the metal plate.

Singing Aluminum Pole Demonstration

- A 2-m long, hollow aluminum pole is held at its midpoint and *strummed* to set it into vibrational motion.
- The procedure is repeated with the pole held at different positions (1/4-th, 1/6-th, etc.). Different pitches are heard for the different positions where it is held.
- Each vibrational pattern represents a low-energy, favored vibrational modes.
- Each pattern is associated with a harmonic frequency.

Vibrating Strings

The natural frequencies or harmonics of a vibrating string are associated with standing wave patterns.

One of the several *favored* vibrational modes is shown at the right.

All patterns share these traits:

- There is an alternating pattern of nodes and antinodes.
- A half-number or a whole number of wavelengths.
- Nodal positions are at the ends of the string.
- One pattern is related to the next pattern by the addition (or subtraction) of one or more nodes (and antinodes).

Harmonics for Vibrating Strings

There are many other vibrational patterns with which the string can vibrate:

 2^{nd} Harmonic: one-half the λ of 1^{st} Harmonic ... and two times the f.

 3^{rd} Harmonic: one-third the λ of 1^{st} Harmonic ... and three times the f.

 4^{th} Harmonic: one-fourth the λ of 1^{st} Harmonic ... and four times the **f**.

f = 3750 Hz

Mathematical Patterns

The manner in which the string vibrates exhibits a pattern ...

... and so does the mathematics associated with n, f, and λ .

Harmonic	Pattern	# of Nodes	# of Antinodes	λ	f	Examples	
						λ (m)	f (Hz)
1 st	\bigcirc	2	1	λ1	f ₁	1.20	50
2 nd	\longleftrightarrow	3	2	λ1 /2	2• f ₁	0.60	100
3 rd	\longleftrightarrow	4	3	λ1/3	3∙ f₁	0.40	150
4 th		5	4	λ1/4	4∙ f ₁	0.30	200
n th		n+1	n	λ1 /n	n∙ f₁	1.20/n	50∙n

String Length = 60 cm = 0.60 m