Making An Ion

Purpose:

To analyze patterns of ion formation in order to develop a model that explains how an atom becomes a stable ion.

Getting Ready:

Visit the Making An Ion simulation at The Physics Classroom website:

https://www.physicsclassroom.com/Physics-Interactives/Chemistry/Making-An-Ion

Navigational Path:

<u>www.physicsclassroom.com</u> → Physics Interactives → Chemistry → Making an Ion

Background:

Atoms consist of protons (+), neutrons, and electrons (-). Protons and neutrons are located in the nucleus, the dense, central part of the atom. Electrons are located in electron shells of varying sizes, all centered around the nucleus. The largest, outermost shell that electrons occupy is referred to as the **valence shell**. In this activity, you will investigate how a neutral atom makes changes to its valence shell in order to become a charged ion.

Data Collection:

First collect and record data. If a cell is not specified, it's your free choice.

Group #	Element Symbol (at. #)	# of v.e. in Atom	Atom's Outer- Most Shell (circle)	e ⁻ s Gained or Lost to form lon? (circle)	# e ⁻ s Gained or Lost to form Ion	# of v.e. in <mark>Ion</mark>	lon's Outer- Most Shell (circle)	Charge on lon (don't forget +/-)
1	Na (11)		1234	GL			1234	
2	Mg (12)		1234	GL			1234	
13	AI (13)		1234	GL			1234	
15	N (8)		1234	GL			1234	
16	O (11)		1234	GL			1234	
17	F (9)		1234	GL			1234	
2	Ca (20)		1234	GL			1234	
Free Choice	Free Choice		1234	GL			1234	
Free Choice	Free Choice		1234	GL			1234	
Free Choice	Free Choice		1234	GL			1234	
18	Free Choice		1234					
18	Free Choice		1234					

Analysis Questions:

- 1. Which group consists of elements whose atoms contain 8 ve's?
- 2. Complete: Metallic elements _____ (gain, lose) e⁻s in order to acquire a valence shell with _____ e⁻s. Their ions are _____ (+, -) and have the same # of ve's as the atoms of a Group _____ element.
- 3. Complete: Nonmetallic elements ______ (gain, lose) e⁻s in order to acquire a valence shell with ______ e⁻s. Their ions are ______ (+, -) and have the same # of ve's as the atoms of a Group ______ element.
- 4. Complete: An atom of a Group 1 element has _____ ve's. This atom will _____ (gain, lose) _____ (enter a #) e⁻(s) and becomes an ion with a _____ charge. The ion has _____ ve's, which is the same as a Group _____ element.
- 5. Complete: An atom of a Group 16 element has ______ ve's. This atom will ______ (gain, lose) ______ (enter a #) e⁻(s) and becomes an ion with a ______ charge. The ion has ______ ve's, which is the same as a Group ______ element.
- 6. Free Choice ... Complete: An atom of a Group _____ (not 1 nor 16) element has _____ ve's. This atom will _____ (gain, lose) _____ (enter a #) e⁻ and becomes an ion with a _____ charge. The ion has _____ ve's, which is the same as a Group _____ element.
- 7. Place a **T** or an **F** in the blank to identify the statement as being True (**T**) or False (**F**):
 - _____ A neutral atom becomes charged positively by gaining protons.
 - _____ An atom with that loses 2 electrons has a charge of -2.
 - _____ A neutral atom does not possess any protons or electrons but only neutrons.
 - _____ An ion becomes neutral by gaining neutrons.

Conclusion: Use your findings to describe a model that explains how and why an atom becomes an ion.