Limiting Reactants

Purpose:

To investigate the mathematics of chemical reactions under conditions in which there is a limiting and an excess reactant.

Getting Ready:

Visit the Limiting Reactants simulation at The Physics Classroom website:

https://www.physicsclassroom.com/Physics-Interactives/Chemistry/Limiting-Reactants

Navigational Path:

<u>www.physicsclassroom.com</u> → Physics Interactives → Chemistry → Limiting Reactants

Getting Acquainted:

The interface is shown at the right. There are five main sections that we will reference in this activity:

- Settings and Help
- Reaction Information
- Controls
- Animation
- Output Display

Observe each section and become acquainted with the interface. Before starting, experiment with the Controls, adjust some settings and observe the results, tap Start

and watch an animation and the Output displays. It's not too complicated; but get acquainted with the buttons and the output displays before we begin.

Part 1: Stoichiometric Conditions

1. Adjust the Sim Speed to level 1. Pick Reaction 1 to study. Observe the balanced chemical equation in the Reaction Information section. The Coefficient Ratio is 1:3 for the

two reactants. Run the following trials. They should all have the same **Availability Ratio**. Record the results in the table. Pick your own reactant amounts for Trials 3 and 4.

Trial	Init. Moles of N ₂	Init. Moles of H ₂	Avail. Ratio	Ending Moles NH₃
1	10	30	1: 3.00	
2	20	60	1 : 3.00	
3			1 : 3.00	
4			1 : 3.00	

2. Observe the ICE Table.

What is the **Ending Amount** of reactants when the Availability Ratio matches the Coefficient Ratio?

- 3. Rerun a trial if you must to answer this question. Observe the bar charts on the left side of the Output Displays section. How would you describe the final bar height of the reactants in these trials?
- 4. The reaction conditions in Question 1 are referred to as Stoichiometric Conditions. The reactants are initially present in the reactor at the same ratio at which the reactants are consumed. In this case, it was 1 part N₂ to 3 parts H₂. <u>Under such conditions, all the reactants are used up</u>. For reaction 1, the mole ratio is 1:3. But it is different for different reactions. Pick one of the other reactions (but not #5 or #6) and repeat the study. Adjust the # of moles so that the availability ratio matches the coefficient ratio. Complete the table below, including the balanced chemical equation:

Reactio	on #:	(Reactants) \rightarrow	Coeff. Ratio =			
Trial	Init. Moles of (Rxt 1)	Init. Moles of (Rxt 2)	Availability Ratio*	Ending Moles of (Product)		
1						
2						
3						

* Must match the Coeff. Ratio

5. For the reaction you have chosen, describe how the mole amounts must be initially set in order for all the reactants to be used up.

Part 2: Non-Stoichiometric Conditions

- 6. Select **Reaction #1** again. Keep the **Sim Speed** set to level 1. If you must, use the simulation to answer these two questions:
 - How many mol of H₂ react with 10.0 mol of N₂?
 - How many mole of NH₃ are produced by the reaction of 10.0 mol of N₂?
- 7. Now run the following trials. Record all data.

Trial	Initial Moles N ₂	Initial Moles H ₂	Avail. Ratio	Ending Moles N ₂	Ending Moles H ₂	Ending Moles NH₃
1	10.0	40.0				
2	10.0	50.0				
3	10.0	24.0				
4	10.0	18.0				

8. The reaction conditions in **Question 7** are referred to as **Non-Stoichiometric Conditions**. The availability ratio is not matched to the coefficient ratio. One of the reactant bars depletes to 0 height; the other bar is greater than 0. One of the reactants is used up; there is an excess or left overs of the other reactant. The reactant that is used

up is referred to as the **limiting reactant**. When it becomes used up, the reaction stops. The reactant that is left over at that point is the **excess reactant**. Complete the table at the right, identifying the formula (N_2 or H_2) of the limiting and the excess reactant for each trial from **Question 7**.

Trial	Coeff. Ratio	Avail. Ratio	Limiting Reactant	Excess Reactant
1	1:3			
2	1:3			
3	1:3			
4	1:3			

9. For Reaction 1, the coefficients indicate that there must be 3 times as much H₂ as N₂ (in terms of moles). Based on the above data, complete the following statements.

If there is more than 3X as much H_2 as N_2 , then the limiting reactant is _____ (N_2, H_2) and the excess reactant is _____ (N_2, H_2).

If there is less than 3X as much H_2 as N_2 , then the limiting reactant is _____ (N_2, H_2) and the excess reactant is _____ (N_2, H_2).

10. Run the following three trials for Reaction 1. Then answer the follow-up questions.

Trial	Initial Moles N ₂	nitial Initial bles N ₂ Moles H ₂		Ending Moles N ₂	Ending Moles H ₂	Ending Moles NH₃
1	15.0	30.0				
2	20.0	30.0				
3	30.0	30.0				

11. For the above table (**Question 10**), H₂ is the limiting reactant and N₂ is the excess reactant. Identify the following statements as being True (**T**) or False (**F**).

T or F? Statement

- _____a. The reactant with the least number of moles is the limiting reactant.
- b. The reaction ends when the limiting reactant is used up.
- c. If the amount of excess reactant is increased, more product is made.
 - d. The excess reactant is the reactant that is partly left over at the end.
 - e. The limiting reactant is the reactant that is used up first.

12. Predict:

- a. If 14.0 mol N₂ and 30.0 mol H₂ are present, then _____ is the limiting reactant and there will be _____ mol of the excess reactant and _____ mol NH₃ at the end.
- b. If 10.0 mol N₂ and 34.0 mol H₂ are present, then _____ is the limiting reactant and there will be _____ mol of the excess reactant and _____ mol NH₃ at the end.

Part 3: Predicting the Amount of Product and Excess Reactant

13. An ICE Table is a tool for keeping track of the amount of reactants and products that are Initially present, the amount of Change that occurs as the result of the reaction, and the Ending amount of reactants and product. Complete the following ICE Tables. Use coefficient ratios and availability ratios to think through what is limiting and excess and to complete the math on your own. But if needed, use the simulation to complete or to check answers for the tables. The tables apply to reactions 1, 4, and 8.

Rxn #1:	N ₂	+	3 H ₂	\rightarrow	2 NH₃	Rxn #1:	N ₂	+	3 H ₂	\rightarrow	2 NH ₃
	20.0		70.0		0.0	- I	40.0		90.0		0.0
С						С					
E						E					
Rxn #4:	3 Ti	+	2 N ₂	\rightarrow	Ti₃N₄	Rxn #4:	3 Ti	+	2 N 2	\rightarrow	Ti₃N₄
- I	30.0		30.0		0.0		40.0		20.0		0.0
С						С					
E						E					
Rxn #8:	4 Li	+	O 2	\rightarrow	2 Li₂O	Rxn #8:	4 Li	+	O 2	\rightarrow	2 Li ₂ O
- I	40.0		20.0		0.0		50.0		10.0		0.0
С						С					
E						E					

14. If you can accurately complete these statements, then you've earned the Dataway! Statements are based on Reaction #1.

Dataway!!

- a. There are initially 15 mol N₂ and 60 mol H₂. The _____ is the limiting reactant. <u>All</u> of the _____ will react and there will be _____ mol of _____ remaining. _____ mol NH₃ are produced.
- b. There are initially 25 mol N₂ and 60 mol H₂. The _____ is the limiting reactant. <u>All</u> of the _____ will react and there will be _____ mol of _____ remaining. _____ mol NH₃ are produced.
- c. There are initially 12 mol N₂ and 40 mol H₂. The _____ is the limiting reactant. <u>All</u> of the _____ will react and there will be _____ mol of _____ remaining. _____ mol NH₃ are produced.
- d. There are initially 20 mol N₂ and 45 mol H₂. The _____ is the limiting reactant. <u>All</u> of the _____ will react and there will be _____ mol of _____ remaining. _____ mol NH₃ are produced.