Up and Down With Energy

NOTE: Numerical values used in these questions are selected at random from a list of possible values. As such, there are considerably more problems than what is displayed below. The g value is selected by the student when starting an activity.

Activity 1: Apprentice Difficulty Level

NOTE: KE_A values are randomly selected. Additionally, there are three different graphics that are randomly selected.

A projectile is launched vertically upward. See diagram. Given that $PE_A = 0.0$ J, and $KE_A = 640$ J, and $KE_C = 0.0$ J, use the background grid and energy principles to fill in all blanks.

РЕв (J):	
КЕв (Ј):	
PEc(J):	
PE _D (J):	
KE _D (J):	
KE _E (J):	

D

Ε

Activity 2: Master Difficulty Level

NOTE: mass, KE_A and h values are randomly selected. Additionally, there are four different graphics that are randomly selected.

A 4.0-kg projectile is launched vertically upward. See diagram. The PE_A = 0.0 J and KE_A = 420 J. The heights are: $h_B = 3.8 \text{ m}$; $h_C = 8.4 \text{ m}$; $h_D = 2.5 \text{ m}$. Use g =______ N/kg (9.8 or 10.0 as decided by student). PE_B (J): ______ KE_B (J): ______ PE_C (J): ______ PE_D (J): ______ PE_E (J): ______ KE_E (J): ______

Activity 3: Wizard Difficulty Level

NOTE: mass and KE_A values are randomly selected. Additionally, there are four different graphics that are randomly selected.

РЕв (J):	
KE _B (J):	
PE _c (J):	
PE _D (J):	• D
KE _D (J):	
KE _E (J):	
h _c (m):	
h _D (m):	
v _D (m/s):	E
ve (m/s):	

A 4.0-kg projectile is launched vertically upward. See diagram. The $PE_A = 0.0 \text{ J}$, $KE_A = 840 \text{ J}$, and $KE_C = 0 \text{ J}$. The value of h_B is ½- h_C and the value of h_D is ¼- h_C . Determine all missing values. Use g =_____ N/kg (9.8 or 10.0 as decided by student).

A 4.0-kg projectile is launched vertically upward. See diagram. The $PE_A = 0.0 \text{ J}$, $KE_A = 840 \text{ J}$, and $KE_C = 0 \text{ J}$. The value of h_B is $\frac{3}{4}$ - h_C and the value of h_D is $\frac{1}{2}$ - h_C . Determine all missing values. Use g =_____ **N/kg** (9.8 or 10.0 as decided by student).

РЕ _В (J):	
КЕв (J):	
PE _C (J):	
PE _D (J):	
KE _D (J):	
KE _E (J):	
h _C (m):	
h⊳ (m):	
v⊳ (m/s):	
v _E (m/s):	

A 4.0-kg projectile is launched vertically upward. See diagram. The $PE_A = 0.0 \text{ J}$, $KE_A = 840 \text{ J}$, and $KE_C = 0 \text{ J}$. The value of h_B is $\frac{1}{2} \cdot h_C$ and the value of h_D is $\frac{3}{4} \cdot h_C$. Determine all missing values. Use g =_____ **N/kg** (9.8 or 10.0 as decided by student).

