The Harmonics of Vibrating Strings Video Notes

Standing Wave Patterns

- Each frequency at which a string naturally vibrates is associated with a standing wave pattern.
- Standing wave patterns consist of nodes and antinodes.

A **node** is a location along the string that appears to be standing still. It is a point of "**no-des**"-placement.

An **antinode** is the opposite – a point that is vibrating wildly from a maximum positive displacement to a maximum negative displacement.

Harmonic Frequencies and Their Relationships

- One of the frequencies at which a string **naturally** vibrates.
- The lowest-frequency harmonic is the first harmonic or fundamental frequency.
- Other frequency values are whole number multiples of the fundamental frequency

Length and Wavelength Relationships

- The standing wave pattern for the first harmonic has one anti-node and one-half a wavelength in the string.
- The wavelength of the first harmonic is ALWAYS twice the string length.
- Other harmonics have wavelengths that are fractions of this wavelength.

Comparing Patterns, Frequencies and Wavelengths for Other Harmonics Second Harmonic:

Two antinodes in the pattern

$$\mathbf{f}_2 = \mathbf{2} \bullet \mathbf{f}_1 \qquad \qquad \lambda_2 = \frac{1}{2} \bullet \lambda_1$$

f₁ = 150 Hz

 $f_2 = 300 \text{ Hz}$

 $f_3 = 450 \text{ Hz}$

 $f_{a} = 600 \text{ Hz}$

- Just an example.

Third Harmonic:

Three antinodes in the pattern

$$\mathbf{f}_3 = \mathbf{3} \bullet \mathbf{f}_1 \qquad \qquad \lambda_3 = \mathbf{1}_3 \bullet \lambda_1$$

Fourth Harmonic: Four antinodes in the pattern

$$\mathbf{f}_4 = \mathbf{4} \bullet \mathbf{f}_1 \qquad \qquad \lambda_4 = \mathbf{1}_4 \bullet \lambda_1$$

Harmonic	Pattern	# of ANs	λ	f	Examples	
					f (Hz)	λ (cm)
1 st	\bigcirc	1	λ1	f ₁	150	120
2 nd	\bigotimes	2	λ1 /2	2∙ f ₁	300	60
3rd	\longleftrightarrow	3	λ1 /3	3∙ f ₁	450	40
4 th	\longleftrightarrow	4	λ1 /4	4∙ f ₁	600	30
5 th		5	λ ₁ /5	5∙ f ₁	750	24
n th		n	λ₁ /n	n∙ f₁	150∙n	1.20/n

Follow along with the video and show the solution for the following two examples.

Example 1

A vibrating string has a first harmonic of 100 Hz. What would the standing wave pattern look like for the same string when vibrating at 500 Hz?

Example 2

A string is 75 cm long. What would the standing wave pattern look like for a standing wave with a wavelength of 50 cm?