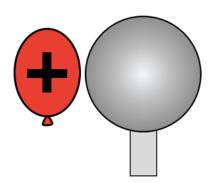

Questions

Activity 1: Separation of Charge Question Group 1 Question 1

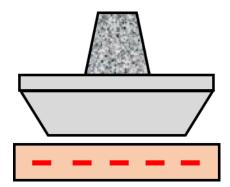
A negatively-charged balloon is brought near to a neutral, conducting sphere. When it is held near, what does the charge distribution on the metal sphere look like?


In this situation, the metal sphere is _____. Select all that apply.
negatively-charged
positively-charged
electrically neutral
polarized

Question 2

A positively-charged balloon is brought near to a neutral, conducting sphere. When it is held near, what does the charge distribution on the metal sphere look like?

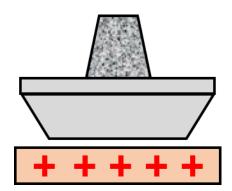
In this situation, the metal sphere is _____. Select all that apply.
negatively-charged
positively-charged
electrically neutral
polarized



Question Group 2 Question 3

polarized

A neutral, aluminum pie plate is brought near to a negatively-charged foam board. When it is held near, what does the charge distribution on the aluminum pie plate look like?


In this situation, the aluminum pie plate is _____. Select all that apply.
negatively-charged
positively-charged
electrically neutral

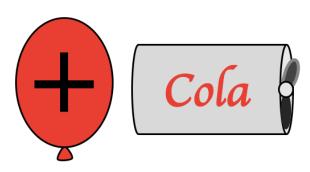
Question 4

A neutral, aluminum pie plate is brought near to a positivelycharged foam board. When it is held near, what does the charge distribution on the aluminum pie plate look like?

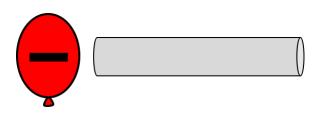

In this situation, the aluminum pie plate is _____. Select all that apply.
negatively-charged
positively-charged
electrically neutral
polarized

Question Group 3 Question 5

A negatively-charged balloon is brought near to a neutral, metal pop can. When it is held near, what does the charge distribution on the metal can look like?

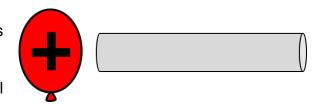

In this situation, the metal pop can is _____.
Select all that apply.
negatively-charged
positively-charged
electrically neutral
polarized

Question 6


A positively-charged balloon is brought near to a neutral, metal pop can. When it is held near, what does the charge distribution on the metal can look like?

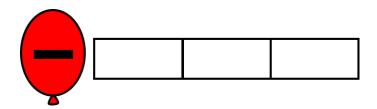
In this situation, the metal pop can is ______ Select all that apply. negatively-charged positively-charged electrically neutral polarized

Question Group 4 Question 7


A negatively-charged balloon is brought near to a neutral, metal bar. When it is held near, what does the charge distribution on the metal bar look like?

In this situation, the metal bar is _____. Select all that apply. negatively-charged positively-charged electrically neutral polarized

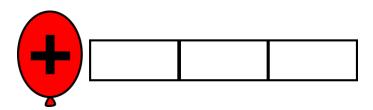
Question 8


A positively-charged balloon is brought near to a neutral, metal bar. When it is held near, what does the charge distribution on the metal bar look like?

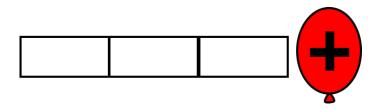
In this situation, the metal bar is _____. Select all that apply. negatively-charged positively-charged electrically neutral polarized

Activity 2: Particle Flow Question Group 5 Question 9

A negatively-charged balloon is brought near a set of three blocks. Some blocks are conductors; others are insulators. Describe how the blocks become polarized and show what particle movement is involved to cause this polarization.

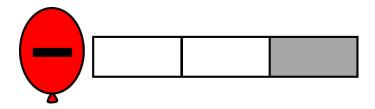

Question 10

A negatively-charged balloon is brought near a set of three blocks. Some blocks are conductors; others are insulators. Describe how the blocks become polarized and show what particle movement is involved to cause this polarization.

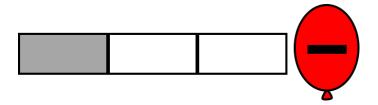


Question Group 6 Question 11

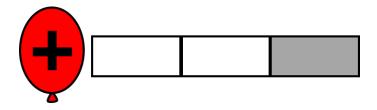
A positively-charged balloon is brought near a set of three blocks. Some blocks are conductors; others are insulators. Describe how the blocks become polarized and show what particle movement is involved to cause this polarization.



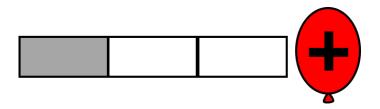
Question 12


Question Group 7 Question 13

A negatively-charged balloon is brought near a set of three blocks. Some blocks are conductors; others are insulators. Describe how the blocks become polarized and show what particle movement is involved to cause this polarization.

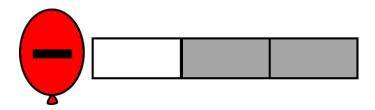

Question 14

A negatively-charged balloon is brought near a set of three blocks. Some blocks are conductors; others are insulators. Describe how the blocks become polarized and show what particle movement is involved to cause this polarization.

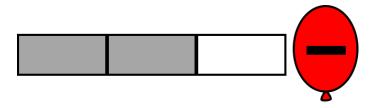


Question Group 8 Question 15

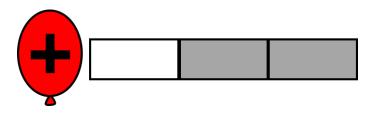
A positively-charged balloon is brought near a set of three blocks. Some blocks are conductors; others are insulators. Describe how the blocks become polarized and show what particle movement is involved to cause this polarization.


Question 16

Question Group 9


Question 17

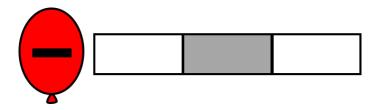
A negatively-charged balloon is brought near a set of three blocks. Some blocks are conductors; others are insulators. Describe how the blocks become polarized and show what particle movement is involved to cause this polarization.


Question 18

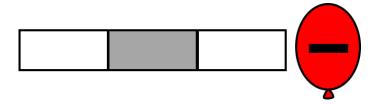
A negatively-charged balloon is brought near a set of three blocks. Some blocks are conductors; others are insulators. Describe how the blocks become polarized and show what particle movement is involved to cause this polarization.

Question Group 10 Question 19

A positively-charged balloon is brought near a set of three blocks. Some blocks are conductors; others are insulators. Describe how the blocks become polarized and show what particle movement is involved to cause this polarization.


Question 20

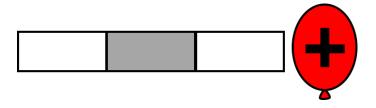
Question Group 11


Question 21

A negatively-charged balloon is brought near a set of three blocks. Some blocks are conductors; others are insulators. Describe how the blocks become polarized and show what particle movement is involved to cause this polarization.

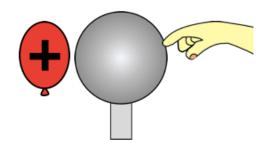
Question 22

A negatively-charged balloon is brought near a set of three blocks. Some blocks are conductors; others are insulators. Describe how the blocks become polarized and show what particle movement is involved to cause this polarization.



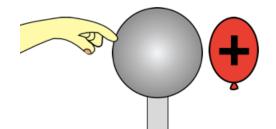
Question Group 12 Question 23

A positively-charged balloon is brought near a set of three blocks. Some blocks are conductors; others are insulators. Describe how the blocks become polarized and show what particle movement is involved to cause this polarization.


Question 24

Activity 3: Induction Question Group 13 Question 25

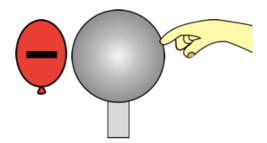
A positively-charged balloon is brought near to a neutral, conducting sphere. When it is held near, the opposite side of the conducting sphere is touched. Touching the sphere causes it to become _____.


- a. negatively-charged
- b. positively-charged
- c. electrically neutral

What particle movement explains why this occurs? Tap to choose the appropriate explanation.

Question 26

A positively-charged balloon is brought near to a neutral, conducting sphere. When it is held near, the opposite side of the conducting sphere is touched. Touching the sphere causes it to become _____.

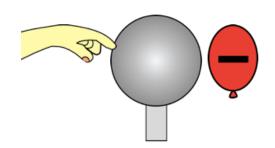

- a. negatively-charged
- b. positively-charged
- c. electrically neutral

What particle movement explains why this occurs? Tap to choose the appropriate explanation.

Question Group 14 Question 27

A negatively-charged balloon is brought near to a neutral, conducting sphere. When it is held near, the opposite side of the conducting sphere is touched. Touching the sphere causes it to become _____.

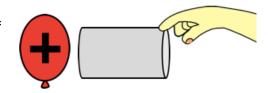
- a. negatively-charged
- b. positively-charged
- c. electrically neutral



Question 28

A negatively-charged balloon is brought near to a neutral, conducting sphere. When it is held near, the opposite side of the conducting sphere is touched.

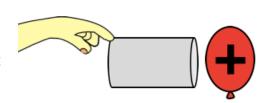
Touching the sphere causes it to become _____.


- a. negatively-charged
- b. positively-charged
- c. electrically neutral

What particle movement explains why this occurs? Tap to choose the appropriate explanation.

Question Group 15 Question 29

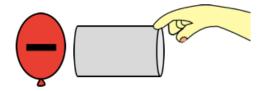
A positively-charged balloon is brought near to a neutral, conducting can. When it is held near, the opposite side of the conducting can is touched. Touching the can causes it to become



- a. negatively-charged
- b. positively-charged
- c. electrically neutral

What particle movement explains why this occurs? Tap to choose the appropriate explanation.

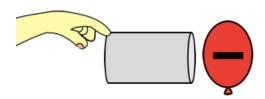
Question 30


A positively-charged balloon is brought near to a neutral, conducting can. When it is held near, the opposite side of the conducting can is touched. Touching the can causes it to become

- a. negatively-charged
- b. positively-charged
- c. electrically neutral

Question Group 16 Question 31

A negatively-charged balloon is brought near to a neutral, conducting can. When it is held near, the opposite side of the conducting can is touched. Touching the can causes it to become

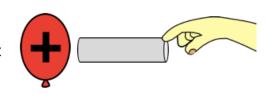


- a. negatively-charged
- b. positively-charged
- c. electrically neutral

What particle movement explains why this occurs? Tap to choose the appropriate explanation.

Question 32

A negatively-charged balloon is brought near to a neutral, conducting can. When it is held near, the opposite side of the conducting can is touched. Touching the can causes it to become



- a. negatively-charged
- b. positively-charged
- c. electrically neutral

What particle movement explains why this occurs? Tap to choose the appropriate explanation.

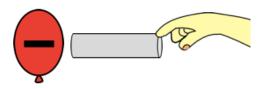
Question Group 17 Question 33

A positively-charged balloon is brought near to a neutral, conducting bar. When it is held near, the opposite side of the conducting bar is touched. Touching the bar causes it to become _____.

- a. negatively-charged
- b. positively-charged
- c. electrically neutral

Question 34

A positively-charged balloon is brought near to a neutral, conducting bar. When it is held near, the opposite side of the conducting bar is touched. Touching the bar causes it to become

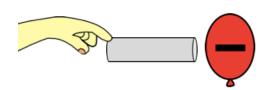


- a. negatively-charged
- b. positively-charged
- c. electrically neutral

What particle movement explains why this occurs? Tap to choose the appropriate explanation.

Question Group 18 Question 35

A negatively-charged balloon is brought near to a neutral, conducting bar. When it is held near, the opposite side of the conducting bar is touched. Touching the bar causes it to become

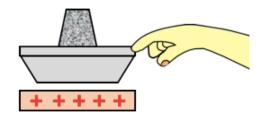


- a. negatively-charged
- b. positively-charged
- c. electrically neutral

What particle movement explains why this occurs? Tap to choose the appropriate explanation.

Question 36

A negatively -charged balloon is brought near to a neutral, conducting bar. When it is held near, the opposite side of the conducting bar is touched. Touching the bar causes it to become

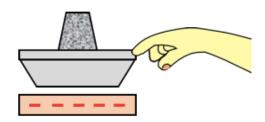


- a. negatively-charged
- b. positively-charged
- c. electrically neutral

Question Group 19 Question 37

A neutral, aluminum pie tin is held above a positively-charged foam board. When it is held above the foam, it is touched near the top rim. Touching the rim causes the bar to become _____.

- a. negatively-charged
- b. positively-charged
- c. electrically neutral



What particle movement explains why this occurs? Tap to choose the appropriate explanation.

Question 38

A neutral, aluminum pie tin is held above a negatively-charged foam board. When it is held above the foam, it is touched near the top rim. Touching the rim causes the bar to become _____.

- a. negatively-charged
- b. positively-charged
- c. electrically neutral

