Electric Field Strength

Activity 1 – Ranking Tasks Question Group 1 Question 1

Question Group 2 Question 4

Question Group 3 Question 7

Question Group 4 Question 10

Question Group 5 Question 13

Question Group 6 Question 16

Activity 2 – Case Study: A versus B

Question Group 7 Question 19

Consider two locations – A and B – in the space surrounding two identically-charged Van de Graaff generators. The relative amount of charge on each (expressed in terms of Q) and the relative distance of each location from the generator's center (expressed in terms of R) are shown.

Question 20

Consider two locations – A and B – in the space surrounding two identically-charged Van de Graaff generators. The relative amount of charge on each (expressed in terms of Q) and the relative distance of each location from the generator's center (expressed in terms of R) are shown.

Consider two locations – A and B – in the space surrounding two identically-charged Van de Graaff generators. The relative amount of charge on each (expressed in terms of Q) and the relative distance of each location from the generator's center (expressed in terms of R) are shown.

... by a factor of _____. 2 3 4 6 9

Question Group 8 Question 22

Consider two locations – A and B – in the space surrounding two identically-charged Van de Graaff generators. The relative amount of charge on each (expressed in terms of Q) and the relative distance of each location from the generator's center (expressed in terms of R) are shown.

Consider two locations – A and B – in the space surrounding two identically-charged Van de Graaff generators. The relative amount of charge on each (expressed in terms of Q) and the relative distance of each location from the generator's center (expressed in terms of R) are shown.

The electric field strength is greatest at location ______ by a factor of ______....3691827

Question 24

Consider two locations – A and B – in the space surrounding two identically-charged Van de Graaff generators. The relative amount of charge on each (expressed in terms of Q) and the relative distance of each location from the generator's center (expressed in terms of R) are shown.

Question Group 9 Question 25

Consider two locations – A and B – in the space surrounding two Van de Graaff generators. The charge on each is different. The relative amount of charge on each (expressed in terms of Q) and the relative distance of each location from the generator's center (expressed in terms of R) are shown.

... by a factor of _____

2 4 8 16

Question 26

Consider two locations – A and B – in the space surrounding two Van de Graaff generators. The charge on each is different. The relative amount of charge on each (expressed in terms of Q) and the relative distance of each location from the generator's center (expressed in terms of R) are shown.

 The electric field strength is greatest at location ______.

 ... by a factor of ______.

 2
 4

 8
 16

Consider two locations – A and B – in the space surrounding two Van de Graaff generators. The charge on each is different. The relative amount of charge on each (expressed in terms of Q) and the relative distance of each location from the generator's center (expressed in terms of R) are shown.

The electric field strength is greatest at location								
by a	factor	of	·					
2	4	5	8					

Question Group 10

Question 28

Consider two locations – A and B – in the space surrounding two Van de Graaff generators. The charge on each is different. The relative amount of charge on each (expressed in terms of Q) and the relative distance of each location from the generator's center (expressed in terms of R) are shown.

The electric field strength is greatest at location ______ by a factor of ______.

3 6 9 12

Consider two locations – A and B – in the space surrounding two Van de Graaff generators. The charge on each is different. The relative amount of charge on each (expressed in terms of Q) and the relative distance of each location from the generator's center (expressed in terms of R) are shown.

The electric field strength is greatest at location									
by	a facto	or of							
2	3	6	9	12	18				

Question 30

3

Consider two locations – A and B – in the space surrounding two Van de Graaff generators. The charge on each is different. The relative amount of charge on each (expressed in terms of Q) and the relative distance of each location from the generator's center (expressed in terms of R) are shown.

Question Group 11 Question 31

Consider two locations – A and B – in the space surrounding two Van de Graaff generators. The charge on each is different. The relative amount of charge on each (expressed in terms of Q) and the relative distance of each location from the generator's center (expressed in terms of R) are shown.

The electric field strength is greatest at location								
by a factor of								
4/3	3/2	2	3	4	9/2	12		

Question 32

Consider two locations – A and B – in the space surrounding two Van de Graaff generators. The charge on each is different. The relative amount of charge on each (expressed in terms of Q) and the relative distance of each location from the generator's center (expressed in terms of R) are shown.

Question Group 12 Question 33

Consider two locations – A and B – in the space surrounding two Van de Graaff generators. The charge on each is different. The relative amount of charge on each (expressed in terms of Q) and the relative distance of each location from the generator's center (expressed in terms of R) are shown.

The electric field strength is greatest at location									
by a	factor	of	·						
4/3	3/2	2	3	4	9/2	12			

Question 34

4/3

Consider two locations – A and B – in the space surrounding two Van de Graaff generators. The charge on each is different. The relative amount of charge on each (expressed in terms of Q) and the relative distance of each location from the generator's center (expressed in terms of R) are shown.

Activity 3: Value of E

Question Group 13 Question 35

The value of the electric field strength on the surface of a Van de Graaff generator (location X) is 100.0 N/mC. Determine the electric field strength (in N/mC), accurate to the second decimal place) at location Y.

The value of the electric field strength on the surface of a Van de Graaff generator (location X) is 90.0 N/mC. Determine the electric field strength (in N/mC), accurate to the second decimal place) at location Y.

The value of the electric field strength on the surface of a Van de Graaff generator (location X) is 80.0 N/mC. Determine the electric field strength (in N/mC, accurate to the second decimal place) at location Y.

Question Group 14 Question 38

The value of the electric field strength on the surface of a Van de Graaff generator (location X) is 100.0 N/mC. Determine the electric field strength (in N/mC, accurate to the second decimal place) at location Y.

The value of the electric field strength on the surface of a Van de Graaff generator (location X) is 90.0 N/mC. Determine the electric field strength (in N/mC, accurate to the second decimal place) at location Y.

The value of the electric field strength on the surface of a Van de Graaff generator (location X) is 80.0 N/mC. Determine the electric field strength (in N/mC, accurate to the second decimal place) at location Y.

Question Group 15 Question 41

The value of the electric field strength on the surface of a Van de Graaff generator (location X) is 360.0 N/mC. Determine the electric field strength (in N/mC, accurate to the second decimal place) at location Y.

The value of the electric field strength on the surface of a Van de Graaff generator (location X) is 160.0 N/mC. Determine the electric field strength (in N/mC, accurate to the second decimal place) at location Y.

The value of the electric field strength on the surface of a Van de Graaff generator (location X) is 270.0 N/mC. Determine the electric field strength (in N/mC, accurate to the second decimal place) at location Y.

Question Group 16 Question 44

The value of the electric field strength at location **X** is 23.5 N/mC. Determine the electric field strength (in N/mC, accurate to the second decimal place) on the surface of the Van de Graaff generator (location **Y**).

The value of the electric field strength at location **X** is 21.2 N/mC. Determine the electric field strength (in N/mC, accurate to the second decimal place) on the surface of the Van de Graaff generator (location **Y**).

The value of the electric field strength at location **X** is 19.6 N/mC. Determine the electric field strength (in N/mC, accurate to the second decimal place) on the surface of the Van de Graaff generator (location **Y**).

Question Group 17 Question 47

The value of the electric field strength at location **X** is 38.6 N/mC. Determine the electric field strength (in N/mC, accurate to the second decimal place) on the surface of the Van de Graaff generator (location **Y**).

The value of the electric field strength at location **X** is 17.2 N/mC. Determine the electric field strength (in N/mC, accurate to the second decimal place) on the surface of the Van de Graaff generator (location **Y**).

The value of the electric field strength at location **X** is 29.5 N/mC. Determine the electric field strength (in N/mC, accurate to the second decimal place) on the surface of the Van de Graaff generator (location **Y**).

Question Group 18 Question 50

The value of the electric field strength at location X is 14.5 N/mC. Determine the electric field strength (in N/mC, accurate to the second decimal place) at location Y.

The value of the electric field strength at location X is 10.5 N/mC. Determine the electric field strength (in N/mC, accurate to the second decimal place) at location Y.

The value of the electric field strength at location X is 17.2 N/mC. Determine the electric field strength (in N/mC, accurate to the second decimal place) at location Y.

