Video Notes for Free Fall

Two Questions:

- What exactly is free fall?
- And how is free fall motion described?

Free Fall Definition

- Moving through the air under the sole influence of gravity.
(Other forces are either non-existent or too weak to be significant.)

Acceleration Caused By Gravity

- Gravity (when the only force) always causes an acceleration.
- The direction of the free fall acceleration is down.
- The value of the free fall acceleration is a constant value of $9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ (The estimated value of $10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ is often used.)
- Objects slow down as they rise; objects speed up as they fall.

Velocity Vector

- Velocity is a vector and has a magnitude or numerical value (we call this speed) and a direction.
- Velocity is speed with a direction.
- The velocity value decreases as objects rise upward; the velocity value increases as objects fall downward.
- The direction of the velocity is always in the direction that the object moves.
- The diagram at the right is known as a velocity vector diagram. The arrows represent velocity. The length of the arrow represents the speed. The direction of the arrow reprsents the direction of the velocity vector.

Numerical Representation - Falling from Rest

Time	Velocity
0 s	$0 \mathrm{~m} / \mathrm{s}$
1 s	$10 \mathrm{~m} / \mathrm{s}, \downarrow$ or $-10 \mathrm{~m} / \mathrm{s}$
2 s	$20 \mathrm{~m} / \mathrm{s}, \downarrow$ or $-20 \mathrm{~m} / \mathrm{s}$
3 s	$30 \mathrm{~m} / \mathrm{s}, \downarrow$ or $-30 \mathrm{~m} / \mathrm{s}$
4 s	$40 \mathrm{~m} / \mathrm{s}, \downarrow$ or $-40 \mathrm{~m} / \mathrm{s}$
5 s	$50 \mathrm{~m} / \mathrm{s}, \downarrow$ or $-50 \mathrm{~m} / \mathrm{s}$
6 s	$60 \mathrm{~m} / \mathrm{s}, \downarrow$ or $-60 \mathrm{~m} / \mathrm{s}$

Numerical Representation - Thrown Upward From Ground

Time	Velocity
0 s	$60 \mathrm{~m} / \mathrm{s}, \uparrow$ or $+60 \mathrm{~m} / \mathrm{s}$
1 s	$50 \mathrm{~m} / \mathrm{s}, \uparrow$ or $+50 \mathrm{~m} / \mathrm{s}$
2 s	$40 \mathrm{~m} / \mathrm{s}, \uparrow$ or $+40 \mathrm{~m} / \mathrm{s}$
3 s	$30 \mathrm{~m} / \mathrm{s}, \uparrow$ or $+30 \mathrm{~m} / \mathrm{s}$
4 s	$20 \mathrm{~m} / \mathrm{s}, \uparrow$ or $+20 \mathrm{~m} / \mathrm{s}$
5 s	$10 \mathrm{~m} / \mathrm{s}, \uparrow$ or $+10 \mathrm{~m} / \mathrm{s}$
6 s	$0 \mathrm{~m} / \mathrm{s} \longleftarrow$ Peak
7 s	$10 \mathrm{~m} / \mathrm{s}, \downarrow$ or $-10 \mathrm{~m} / \mathrm{s}$
8 s	$20 \mathrm{~m} / \mathrm{s}, \downarrow$ or $-20 \mathrm{~m} / \mathrm{s}$
9 s	$30 \mathrm{~m} / \mathrm{s}, \downarrow$ or $-30 \mathrm{~m} / \mathrm{s}$
10 s	$40 \mathrm{~m} / \mathrm{s}, \downarrow$ or $-40 \mathrm{~m} / \mathrm{s}$
11 s	$50 \mathrm{~m} / \mathrm{s}, \downarrow$ or $-50 \mathrm{~m} / \mathrm{s}$
12 s	$60 \mathrm{~m} / \mathrm{s}, \downarrow$ or $-60 \mathrm{~m} / \mathrm{s}$

Numerical Patterns:

- When rising, velocity values decrease by $10 \mathrm{~m} / \mathrm{s}$ for every 1 s of time Δ.
- When falling, velocity values increase by $10 \mathrm{~m} / \mathrm{s}$ for every 1 s of time Δ.
- The velocity at the highest position is $0 \mathrm{~m} / \mathrm{s}$.
- For a launch velocity of $60 \mathrm{~m} / \mathrm{s}$, it takes 6 s to slow down to $0 \mathrm{~m} / \mathrm{s}$.
- For a launch velocity of $60 \mathrm{~m} / \mathrm{s}$, it takes 6 s to rise to the peak, 6 s to fall from the peak, and the total time in the air is 12 seconds.
- There are two locations where the speed is $20 \mathrm{~m} / \mathrm{s}$. One is 2 seconds before the peak and one is 2 seconds after the peak.
- Whenever objects are at the same height they have the same speed.

