Activity 1: To Accelerate or Not To Accelerate

Question Group 1

Question #1

A rightward-moving bicycle increases its speed from 2.0 m/s to 12.0 m/s. Is the bicycle accelerating?

Question #2

A rightward-moving motorcycle increases its speed from 5.0 m/s to 25.0 m/s. Is the motorcycle accelerating?

Question #3

A rightward-moving car increases its speed from 10.0 m/s to 20.0 m/s. Is the car accelerating?

Question Group 2

Question #4

A rightward-moving bicycle slows down from 12.0 m/s to 2.0 m/s. Is the bicycle accelerating?

Question #5

A rightward-moving motorcycle slows down from 25.0 m/s to 5.0 m/s. Is the motorcycle accelerating?

Question #6

A rightward-moving car slows down from 20.0 m/s to 10.0 m/s. Is the car accelerating?

Question Group 3

Question #7

The dot diagram represents the motion of a bicycle as it moves from left to right. Is the bicycle accelerating?

The dot diagram represents the motion of a motorcycle as it moves from left to right. Is the motorcycle accelerating?

Question #9

The dot diagram represents the motion of a car as it moves from left to right. Is the car accelerating?

Question Group 4

Question #10

The dot diagram represents the motion of a bicycle as it moves from left to right. Is the bicycle accelerating?

Question #11

The dot diagram represents the motion of a motorcycle as it moves from left to right. Is the motorcycle accelerating?

Question #12

The dot diagram represents the motion of a car as it moves from left to right. Is the car accelerating?

Question Group 5 Question #13

The velocity-time table represents the motion of a bicycle as it moves from left to right. Is the bicycle accelerating?

Time (s)	Velocity (m/s)
0.0	2.0
1.0	4.0
2.0	6.0
3.0	8.0
4.0	10.0
5.0	12.0

Question #14

The velocity-time table represents the motion of a motorcycle as it moves from left to right. Is the motorcycle accelerating?

Time (s)	Velocity (m/s)
0.0	5.0
1.0	10.0
2.0	15.0
3.0	20.0
4.0	25.0

Question #15

The velocity-time table represents the motion of a car as it moves from left to right. Is the car accelerating?

Time (s) Velocity (m/s)

0.0	10.0
1.0	12.0
2.0	14.0
3.0	16.0
4.0	18.0
5.0	20.0

Question Group 6

Question #16

The velocity-time table represents the motion of a bicycle as it moves from left to right. Is the bicycle accelerating?

Time (s)	Velocity (m/s)
0.0	5.0
1.0	5.0
2.0	5.0
3.0	5.0
4.0	5.0

Question #17

The velocity-time table represents the motion of a motorcycle as it moves from left to right. Is the motorcycle accelerating?

Time (s)	Velocity (m/s)
0.0	25.0
1.0	25.0
2.0	25.0

3.0	25.0
4.0	25.0

The velocity-time table represents the motion of a car as it moves from left to right. Is the car accelerating?

Time (s)	Velocity (m/s)
0.0	15.0
1.0	15.0
2.0	15.0
3.0	15.0
4.0	15.0

Activity 2: Getting Direction on Acceleration

Question Group 7:

Question #19

A rightward-moving bicycle is speeding up.

What is the direction of the bicycle's acceleration?

Question #20

A rightward-moving motorcycle is speeding up.

What is the direction of the motorcycle's acceleration?

Question #21

A rightward-moving car is speeding up.

What is the direction of the car's acceleration?

Question Group 8:

Question #22

A rightward-moving bicycle is slowing down. What is the direction of the bicycle's acceleration?

Question #23

A rightward-moving motorcycle is slowing down. What is the direction of the motorcycle's acceleration?

Question #24

A rightward-moving car is slowing down. What is the direction of the car's acceleration?

Question Group 9:

Question #25

A downward falling skydiver is speeding up. What is the direction of the skydiver's acceleration?

Question #26

A downward falling baseball is speeding up. What is the direction of the baseball's acceleration?

Question #27

A downward moving elevator is speeding up. What is the direction of the elevator's acceleration?

Question Group 10:

Question #28

A downward falling skydiver is slowing down. What is the direction of the skydiver's acceleration?

Question #29

A downward moving roller coaster is slowing down. What is the direction of the coaster's acceleration?

A downward moving elevator is slowing down. What is the direction of the elevator's acceleration?

Question Group 11:

Question #31

A northward-moving race car is slowing down. What is the direction of the race car's acceleration?

Question #32

A northward-moving sprinter is slowing down. What is the direction of the sprinter's acceleration?

Question #33

A northward-moving truck is slowing down. What is the direction of the truck's acceleration?

Question Group 12:

Question #34

The dot diagram represents the motion of a rightward-moving race car. What is the direction of the race car's acceleration?

Question #35

The dot diagram represents the motion of a rightward-moving sprinter. What is the direction of the sprinter's acceleration?

Ouestion #36

The dot diagram represents the motion of a rightward-moving truck. What is the direction of the truck's acceleration?

Question Group 13:

Question #37

The dot diagram represents the motion of a rightward-moving race car. What is the direction of the race car's acceleration?

Question #38

The dot diagram represents the motion of a rightward-moving sprinter. What is the direction of the sprinter's acceleration?

Question #39

The dot diagram represents the motion of a rightward-moving truck. What is the direction of the truck's acceleration?

Question Group 14:

Question #40

The velocity-time table represents the motion of a bicycle.

What is the direction of the bicycle's acceleration?

Time (s)	Velocity (m/s)
0.0	10.0, left
1.0	8.0, left

2.0	6.0, left
3.0	4.0, left
4.0	2.0, left

The velocity-time table represents the motion of a motorcycle. What is the direction of the motorcycle's acceleration?

Time (s)	Velocity (m/s)
0.0	20.0, left
1.0	16.0, left
2.0	12.0, left
3.0	8.0, left
4.0	4.0, left

Question #42

The velocity-time table represents the motion of a car.

What is the direction of the car's acceleration?

Time (s)	Velocity (m/s)
0.0	24.0, left
1.0	20.0, left
2.0	16.0, left
3.0	12.0, left
4.0	10.0, left

Activity 3: Adding Value to Acceleration

Question Group 15:

Question #43

A westward-moving bicycle increases its speed from 2.0 m/s to 12.0 m/s in 4.0 seconds. What is the magnitude (i.e., value) and direction of the acceleration?

Question #44

A westward-moving motorcycle increases its speed from 5.0 m/s to 25.0 m/s in 2.5 seconds. What is the magnitude (i.e., value) and direction of the acceleration?

Question #45

A westward-moving car increases its speed from 10.0 m/s to 20.0 m/s ini 2.0 seconds. What is the magnitude (i.e., value) and direction of the acceleration?

Question Group 16:

Question #46

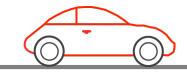
A westward-moving bicycle slows down from 10.0 m/s to 4.0 m/s in 3.0 seconds. What is the magnitude (i.e., value) and direction of the acceleration?

Question #47

A westward-moving motorcycle slows down from 24.0 m/s to 12.0 m/s in 3.0 seconds. What is the magnitude (i.e., value) and direction of the acceleration?

Question #48

A westward-moving car slows down from 26.0 m/s to 10.0 m/s in 2.0 seconds. What is the magnitude (i.e., value) and direction of the acceleration?


Question Group 17:

Question #49

Velocity and time information for a rightward-moving car are shown. What is the magnitude (i.e., value) and direction of the acceleration?

$$t = 0.0 \text{ s}$$

 $v = 3.0 \text{ m/s}$

$$t = 3.0 \text{ s}$$

 $v = 12.0 \text{ m/s}$



Velocity and time information for a rightward-moving car are shown. What is the magnitude (i.e., value) and direction of the acceleration?

$$t = 0.0 \text{ s}$$

 $v = 2.0 \text{ m/s}$

$$t = 2.5 \text{ s}$$

v = 12.0 m/s

Question #51

Velocity and time information for a rightward-moving car are shown. What is the magnitude (i.e., value) and direction of the acceleration?

$$t = 0.0 \text{ s}$$

 $v = 4.0 \text{ m/s}$

$$t = 2.0 \text{ s}$$

 $v = 20.0 \text{ m/s}$

Question Group 18:

Question #52

Velocity and time information for a leftward-moving car are shown. What is the magnitude (i.e., value) and direction of the acceleration?

$$t = 4.0 \text{ s}$$

 $v = 4.0 \text{ m/s}$

$$t = 0.0 s$$

 $v = 20.0 m/s$



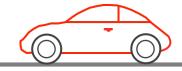
Velocity and time information for a leftward-moving car are shown. What is the magnitude (i.e., value) and direction of the acceleration?

$$t = 2.0 \text{ s}$$

 $v = 4.0 \text{ m/s}$

$$t = 0.0 \text{ s}$$

 $v = 20.0 \text{ m/s}$



Question #54

Velocity and time information for a leftward-moving car are shown. What is the magnitude (i.e., value) and direction of the acceleration?

$$t = 4.0 \text{ s}$$

 $v = 4.0 \text{ m/s}$

$$t = 0.0 \text{ s}$$

 $v = 16.0 \text{ m/s}$

Question Group 19:

Question #55

The velocity-time table represents the motion of a leftward-moving car.

What is the magnitude (i.e., value) and direction of the acceleration?

Time (s)	Velocity (m/s)
0.0	24.0, left
1.0	20.0, left
2.0	16.0, left
3.0	12.0, left
4.0	8.0, left

Question #56

The velocity-time table represents the motion of a leftward-moving car. What is the magnitude (i.e., value) and direction of the acceleration?

Time (s)	Velocity (m/s)
0.0	20.0, left
1.0	16.0, left
2.0	12.0, left
3.0	8.0, left
4.0	4.0, left

Question #57

The velocity-time table represents the motion of a leftward-moving car. What is the magnitude (i.e., value) and direction of the acceleration?

Time (s)	Velocity (m/s)
0.0	26.0, left
1.0	20.0, left
2.0	14.0, left

3.0	8.0, left
4.0	2.0, left

Question Group 20:

Question #58

The velocity-time table represents the motion of a rightward-moving motorcycle. What is the magnitude (i.e., value) and direction of the acceleration?

Time (s)	Velocity (m/s)
0.0	24.0, right
0.5	20.0, right
1.0	16.0, right
1.5	12.0, right
2.0	8.0, right

Question #59

The velocity-time table represents the motion of a rightward-moving motorcycle. What is the magnitude (i.e., value) and direction of the acceleration?

Time (s)	Velocity (m/s)
0.0	24.0, right
0.5	22.0, right
1.0	20.0, right
1.5	18.0, right
2.0	16.0, right

Question #60

The velocity-time table represents the motion of a rightward-moving motorcycle.

What is the magnitude (i.e., value) and direction of the acceleration?

Time (s)	Velocity (m/s)
0.0	26.0, right
2.0	20.0, right
4.0	14.0, right
6.0	8.0, right
8.0	2.0, right