Ohm's Law

Question	Group	1
----------	-------	---

Question 1 The current in the wires of a circuit is 60.0 milliAmps. If the voltage impressed across the ends of the circuit were doubled (with no change in its resistance), then its new current would be milliAmps.
Question 2 The current in the wires of a circuit is 120.0 milliAmps. If the voltage impressed across the ends of the circuit were doubled (with no change in its resistance), then its new current would be milliAmps.
Question 3 The current in the wires of a circuit is 180.0 milliAmps. If the voltage impressed across the ends of the circuit were doubled (with no change in its resistance), then its new current would be milliAmps.
Question Group 2
Question 4 The current in the wires of a circuit is 60.0 milliAmps. If the voltage impressed across the ends of the circuit were tripled (with no change in its resistance), then its new current would be milliAmps.
Question 5 The current in the wires of a circuit is 120.0 milliAmps. If the voltage impressed across the ends of the circuit were tripled (with no change in its resistance), then its new current would be milliAmps.
Question 6 The current in the wires of a circuit is 180.0 milliAmps. If the voltage impressed across the ends of the circuit were tripled (with no change in its resistance), then its new current would be milliAmps.

Question Group 3

Question 7 The current in the wires of a circuit is 60.0 milliAmps. If the resistance of the circuit were doubled (with no change in voltage), then its new current would be milliAmps.
Question 8 The current in the wires of a circuit is 120.0 milliAmps. If the resistance of the circuit were doubled (with no change in voltage), then its new current would be milliAmps.
Question 9 The current in the wires of a circuit is 180.0 milliAmps. If the resistance of the circuit were doubled (with no change in voltage), then its new current would be milliAmps.
Question Group 4
Question 10 The current in the wires of a circuit is 60.0 milliAmps. If the resistance of the circuit were tripled (with no change in voltage), then its new current would be milliAmps.
Question 11 The current in the wires of a circuit is 120.0 milliAmps. If the resistance of the circuit were tripled (with no change in voltage), then its new current would be milliAmps.
Question 12 The current in the wires of a circuit is 180.0 milliAmps. If the resistance of the circuit were tripled (with no change in voltage), then its new current would be milliAmps.
Question Group 5
Question 13 The current in the wires of a circuit is 60.0 milliAmps. If the voltage impressed across the ends of the circuit were halved (i.e., one-half of the original voltage) (with no change in its resistance), then its new current would be milliAmps.

Question 14

The current in the wires of a circuit is 120.0 milliAmps. If the voltage impressed across the ends of the circuit were halved (i.e., one-half of the original voltage) (with no change in its resistance), then its new current would be milliAmps.
Question 15 The current in the wires of a circuit is 180.0 milliAmps. If the voltage impressed across the ends of the circuit were halved (i.e., one-half of the original voltage) (with no change in its resistance), then its new current would be milliAmps.
Question Group 6
Question 16 The current in the wires of a circuit is 60.0 milliAmps. If the voltage impressed across the ends of the circuit were one-third of the original voltage (with no change in its resistance), then its new current would be milliAmps.
Question 17 The current in the wires of a circuit is 120.0 milliAmps. If the voltage impressed across the ends of the circuit were one-third of the original voltage (with no change in its resistance), then its new current would be milliAmps.
Question 18 The current in the wires of a circuit is 180.0 milliAmps. If the voltage impressed across the ends of the circuit were one-third of the original voltage (with no change in its resistance), then its new current would be milliAmps.
Question Group 7
Question 19 The current in the wires of a circuit is 60.0 milliAmps. If the resistance of the circuit were halved (i.e., reduced to one-half the original value) (with no change in voltage), then its new current would be milliAmps.
Question 20 The current in the wires of a circuit is 120.0 milliAmps. If the resistance of the circuit were halved (i.e., reduced to one-half the original value) (with no change in voltage), then its new current would be milliAmps.

Question 21 The current in the wires of a circuit is 180.0 milliAmps. If the resistance of the circuit were halved (i.e., reduced to one-half the original value) (with no change in voltage), then its new current would be milliAmps.
Question Group 8
Question 22 The current in the wires of a circuit is 60.0 milliAmps. If the resistance of the circuit were reduced to one-third the original value (with no change in voltage), then its new current would be milliAmps.
Question 23 The current in the wires of a circuit is 120.0 milliAmps. If the resistance of the circuit were reduced to one-third the original value (with no change in voltage), then its new current would be milliAmps.
Question 24 The current in the wires of a circuit is 180.0 milliAmps. If the resistance of the circuit were reduced to one-third the original value (with no change in voltage), then its new current would be milliAmps.
Question Group 9
Question 25 The current in the wires of a circuit is 60.0 milliAmps. If the voltage impressed across the ends of the circuit were doubled and the resistance were tripled, then its new currer would be milliAmps.
Question 26 The current in the wires of a circuit is 120.0 milliAmps. If the voltage impressed across the ends of the circuit were doubled and the resistance were tripled, then its new currer would be milliAmps.
Question 27 The current in the wires of a circuit is 180.0 milliAmps. If the voltage impressed across the ends of the circuit were doubled and the resistance were tripled, then its new currer would be milliAmps.

Question Group 10

Question 28 The current in the wires of a circuit is 60.0 milliAmps. If the voltage impressed across the ends of the circuit were tripled and the resistance were doubled, then its new current would be milliAmps.
Question 29 The current in the wires of a circuit is 120.0 milliAmps. If the voltage impressed across the ends of the circuit were tripled and the resistance were doubled, then its new current would be milliAmps.
Question 30 The current in the wires of a circuit is 180.0 milliAmps. If the voltage impressed across the ends of the circuit were tripled and the resistance were doubled, then its new current would be milliAmps.
Question Group 11
Question 31 The current in the wires of a circuit is 60.0 milliAmps. If the voltage impressed across the ends of the circuit were tripled and the resistance were halved, then its new current would be milliAmps.
Question 32 The current in the wires of a circuit is 120.0 milliAmps. If the voltage impressed across the ends of the circuit were tripled and the resistance were halved, then its new current would be milliAmps.
Question 33 The current in the wires of a circuit is 180.0 milliAmps. If the voltage impressed across the ends of the circuit were tripled and the resistance were halved, then its new current would be milliAmps.

Question Group 12

റ	11	es	ti	^	n	3	1
×	u	-0		v		v	7

The current in the wires of a circuit is 60.0 milliAmps. If the voltage impressed across the ends of the circuit was doubled and the resistance was one-third the original value, then its new current would be _____ milliAmps.

Question 35

The current in the wires of a circuit is 120.0 milliAmps. If the voltage impressed across the ends of the circuit was doubled and the resistance was one-third the original value, then its new current would be _____ milliAmps.

Question 36

The current in the wires of a circuit is 180.0 milliAmps. If the voltage impressed across the ends of the circuit was doubled and the resistance was one-third the original value, then its new current would be _____ milliAmps.