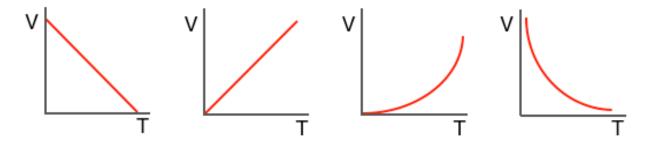
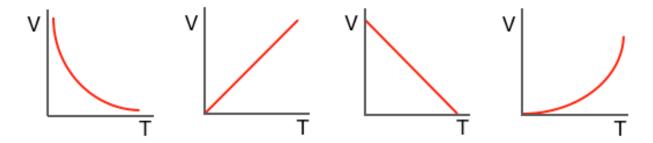

Volume-Temperature Relationships for Gases

Question Group 2


Question 4

Which plot best represents the relationship between the volume and the temperature of a sample of gas? (Assume a constant pressure and number of particles.)


Question 5

Which plot best represents the relationship between the volume and the temperature of a sample of gas? (Assume a constant pressure and number of particles.)

Question 6

Which plot best represents the relationship between the volume and the temperature of a sample of gas? (Assume a constant pressure and number of particles.)

Question Group 3 Question 7

A sample of gas has a constant pressure and number of particles. As the Kelvin temperature of the gas sample is increased, the volume of the gas will _____. increase decrease remain constant

Question 8

A sample of gas has a constant pressure and number of particles. As the Kelvin temperature of the gas sample is increased, the volume of the gas will _____. decrease remain constant increase

Question 9

A sample of gas has a constant pressure and number of particles. As the Kelvin temperature of the gas sample is increased, the volume of the gas will _____. remain constant increase decrease

Activity 2: Proportional Reasoning Question Group 4 Question 10

Observe the data table shown at the right for a sample of gas that has a constant pressure and number of particles. Use the data table to answer the next two questions.

Trial	Temperature	Volume
	(K)	(L)
1	200	0.80
2	300	1.20
3	400	1.60
4	600	2.40
5	800	3.20

When the Kelvin temperature of the gas is doubled, the volume of the gas becomes ____

- a. Two times larger
- c. Eight times larger
- e. One-fourth the size
- g. Not possible to tell

- b. Four times larger
- d. One-half the size
- f. One-eighth the size

Which pairs of trials demonstrate this relationship? Select all that apply.

a. 1 and 2

b. 1 and 3

c. 1 and 4

d. 1 and 5

e. 2 and 4

f. 2 and 5

g. 3 and 4

h. 3 and 5

Question 11

Observe the data table shown at the right for a sample of gas that has a constant pressure and number of particles. Use the data table to answer the next two questions.

When the Kelvin temperature of the gas is doubled, the volume of the gas becomes

Trial	Temperature (K)	Volume (mL)
1	200	400
2	300	600
3	400	800
4	600	1200
5	800	1600

- a. Two times larger
- c. Eight times larger
- e. One-fourth the size
- g. Not possible to tell

- b. Four times larger
- d. One-half the size
- f. One-eighth the size

Which pairs of trials demonstrate this relationship? Select all that apply.

- a. 1 and 2
- b. 1 and 3
- c. 1 and 4
- d. 1 and 5

- e. 2 and 4
- f. 2 and 5
- g. 3 and 4
- h. 3 and 5

Question Group 5 Question 12

Observe the data table shown at the right for a sample of gas that has a constant pressure and number of particles. Use the data table to answer the next two questions.

When the Kelvin temperature of the gas is tripled (increased by a factor of three), the volume of the gas becomes _____.

- a. three times larger
- c. nine times larger
- e. one-sixth the size
- q. Not possible to tell

Trial	Temperature	Volume
	(K)	(L)
1	200	0.80
2	300	1.20
3	400	1.60
4	600	2.40
5	800	3.20

- b. six times larger
- d. one-third the size
- f. one-ninth the size

Which pairs of trials demonstrate this relationship? Select all that apply.

a. 1 and 2

b. 1 and 3

c. 1 and 4

d. 1 and 5

e. 2 and 4

f. 2 and 5

g. 3 and 4

h. 3 and 5

Question 13

Observe the data table shown at the right for a sample of gas that has a constant pressure and number of particles. Use the data table to answer the next two questions.

When the Kelvin temperature of the gas is tripled (increased by a factor of three), the volume of the gas becomes _____.

a. three times larger

c. nine times larger

e. one-sixth the size

g. Not possible to tell

Trial	Temperature	Volume
	(K)	(mL)
1	200	400
2	300	600
3	400	800
4	600	1200
5	800	1600

b. six times larger

d. one-third the size

f. one-ninth the size

Which pairs of trials demonstrate this relationship? Select all that apply.

a. 1 and 2

b. 1 and 3

c. 1 and 4

d. 1 and 5

e. 2 and 4

f. 2 and 5

g. 3 and 4

h. 3 and 5

Question Group 6 Question 14

Observe the data table shown at the right for a sample of gas that has a constant pressure and number of particles. Use the data table to answer the next two questions.

When the Kelvin temperature of the gas is quadruple (increased by a factor of four), the volume of the gas becomes _____.

a. four times larger

c. sixteen times larger

e. one-eighth the size

g. Not possible to tell

Trial	Temperature	Volume
	(K)	(L)
1	200	0.80
2	300	1.20
3	400	1.60
4	600	2.40
5	800	3.20

b. eight times larger

d. one-fourth the size

f. one-sixteenth the size

Which pairs of trials demonstrate this relationship? Select all that apply.

a. 1 and 2

b. 1 and 3

c. 1 and 4

d. 1 and 5

e. 2 and 4

f. 2 and 5

g. 3 and 4

h. 3 and 5

Question 15

Observe the data table shown at the right for a sample of gas that has a constant pressure and number of particles. Use the data table to answer the next two questions.

When the Kelvin temperature of the gas is quadruple (increased by a factor of four), the volume of the gas becomes _____.

а	four	times	larger
a.	ioui	แบบธอ	iaiyei

c. sixteen times larger

e. one-eighth the size

g. Not possible to tell

Trial	Temperature (K)	Volume (mL)
1	200	400
2	300	600
3	400	800
4	600	1200
5	800	1600

b. eight times larger

d. one-fourth the size

f. one-sixteenth the size

Which pairs of trials demonstrate this relationship? Select all that apply.

a. 1 and 2

b. 1 and 3

c. 1 and 4

d. 1 and 5

e. 2 and 4

f. 2 and 5

g. 3 and 4

h. 3 and 5

Question Group 7 Question 16

Observe the data table shown at the right for a sample of gas that has a constant pressure and number of particles. Use the data table to predict the volume of the gas when it's temperature is 1000 K.

Volume	at ⁻	1000	K:	
--------	-----------------	------	----	--

Trial	Volume (L)	Temperature (K)
1	0.50	250
2	1.00	500
3	1.50	750

Question 17

Observe the data table shown at the right for a sample of gas that has a constant pressure and number of particles. Use the data table to predict the volume of the gas when it's temperature is 1000 K.

Volume at 1	1000 K:	
-------------	---------	--

Trial	Volume (L)	Temperature (K)
1	1.00	250
2	1.50	375
3	2.00	500

Question Group 8 Question 18

Observe the data table shown at the right for a sample of gas that has a constant pressure and number of particles. Use the data table to predict the volume of the gas when it's temperature is 1500 K.

Volume at 1500 K:	
-------------------	--

Trial	Volume (L)	Temperature (K)
1	0.50	250
2	1.00	500
3	1.50	750

Question 19

Observe the data table shown at the right for a sample of gas that has a constant pressure and number of particles. Use the data table to predict the volume of the gas when it's temperature is 1500 K.

Volume at 1500 l	K :
------------------	------------

Trial	Volume (L)	Temperature (K)
1	1.00	250
2	1.50	375
3	2.00	500

Question 20

Observe the data table shown at the right for a sample of gas that has a constant pressure and number of particles. Use the data table to predict the volume of the gas when it's temperature is 2000 K.

Volume at 2000 K:	
-------------------	--

Trial Volume (L)		Iriai (, ,		Temperature (K)
1	0.50	250		
2	1.00	500		
3	1.50	750		

Question 21

Observe the data table shown at the right for a sample of gas that has a constant pressure and number of particles. Use the data table to predict the volume of the gas when it's temperature is 2000 K.

Volume at 2000 K:	
-------------------	--

Trial	Volume (L)	Temperature (K)
1	1.00	250
2	1.50	375
3	2.00	500

Activity 3: V-T Data Question Group 10 Question 22

The pressure of a sealed container of gas is kept constant while the temperature is changed. This results in a change in the volume of the gas sample. Based on this information, complete the table below.

Trial	Volume (mL)	Temperature (K)	V/T (mL/K)
1	840	300	
2		450	
3	1456		
4	1726		

Question 23

The pressure of a sealed container of gas is kept constant while the temperature is changed. This results in a change in the volume of the gas sample. Based on this information, complete the table below.

Trial	Volume (mL)	Temperature (K)	V/T (mL/K)
1	780	300	
2		400	
3	1560		
4	2340		

Question 24

The pressure of a sealed container of gas is kept constant while the temperature is changed. This results in a change in the volume of the gas sample. Based on this information, complete the table below.

Trial	Volume (mL)	Temperature (K)	V/T (mL/K)
1	800	250	
2		300	
3	1280		
4	1920		

Question 25

The pressure of a sealed container of gas is kept constant while the temperature is changed. This results in a change in the volume of the gas sample. Based on this information, complete the table below.

Trial	Volume (mL)	Temperature (K)	V/T (mL/K)
1	850	250	
2		350	
3	1360		
4	2380		