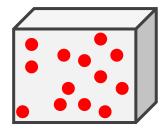
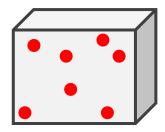
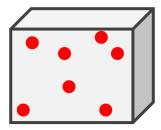

Density Ranking Tasks

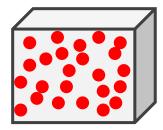

Activity 1: Particle Diagrams

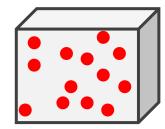

Question Group 1

Question 1

Consider three samples of the same gas present in containers that have the same volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.

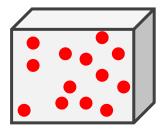


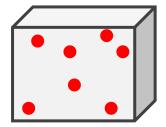


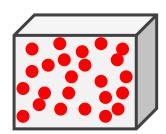


Question 2

Consider three samples of the same gas present in containers that have the same volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.

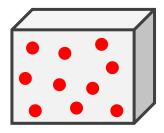


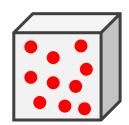




Question 3

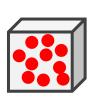
Consider three samples of the same gas present in containers that have the same volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.

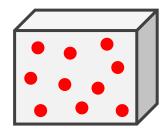


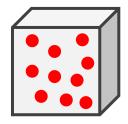


Question Group 2 Question 4

Consider three samples of the same gas present in containers that have a different volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.

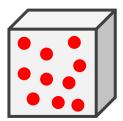


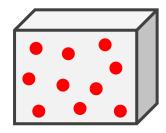




Question 5

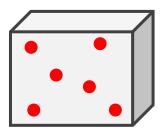
Consider three samples of the same gas present in containers that have a different volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.

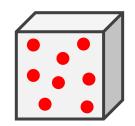




Question 6

Consider three samples of the same gas present in containers that have a different volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.

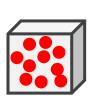


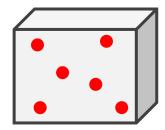


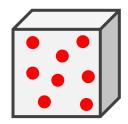
Question Group 3

Question 7

Consider three samples of the same gas present in containers that have a different volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.

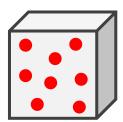


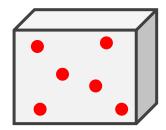




Question 8

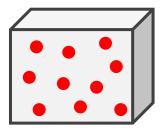
Consider three samples of the same gas present in containers that have a different volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.

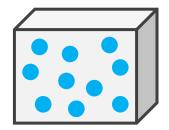


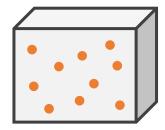


Question 9

Consider three samples of the same gas present in containers that have a different volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.

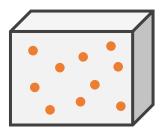


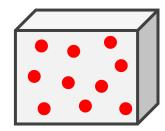


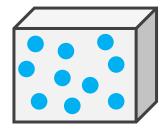


Question Group 4 Question 10

Consider three samples of a different gas present in containers that have the same volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.

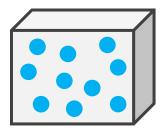


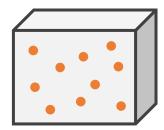


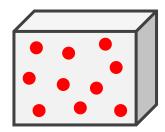


Question 11

Consider three samples of a different gas present in containers that have the same volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.

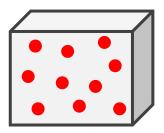


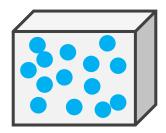




Question 12

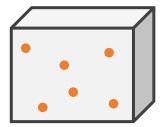
Consider three samples of a different gas present in containers that have the same volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.

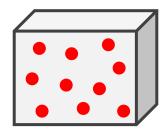


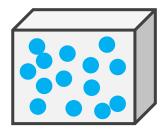


Question Group 5 Question 13

Consider three samples of a different gas present in containers that have the same volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.

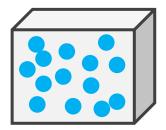


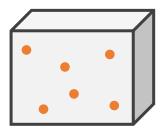


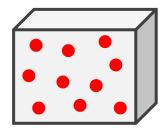


Question 14

Consider three samples of a different gas present in containers that have the same volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.

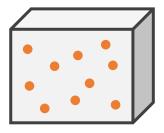


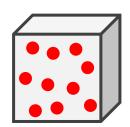




Question 15

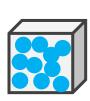
Consider three samples of a different gas present in containers that have the same volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.

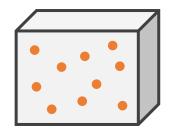


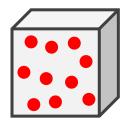


Question Group 6 Question 16

Consider three samples of a different gas present in containers that have a different volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.

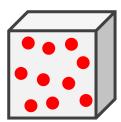


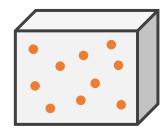




Question 17

Consider three samples of a different gas present in containers that have a different volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.





Question 18

Consider three samples of a different gas present in containers that have a different volume. The particle diagrams show the arrangement of gas particles in the three containers. Rank the three samples according to their density.

Activity 2: Mass and Volume

Question Group 7
Question 19

The measured mass and volume of three metal samples are shown. Rank the samples according to their density.

Mass 65.3 g	Mass 72.1 g	Mass 88.9 g
Volume	Volume	Volume
10.0 mL	10.0 mL	10.0 mL

Question 20

The measured mass and volume of three metal samples are shown. Rank the samples according to their density.

Mass	Mass	Mass
88.9 g	65.3 g	72.1 g
Volume	Volume	Volume
10.0 mL	10.0 mL	10.0 mL

Question 21

The measured mass and volume of three metal samples are shown. Rank the samples according to their density.

Mass	Mass	Mass
72.1 g	88.9 g	65.3 g
Volume	Volume	Volume

Question Group 8

Question 22

The measured mass and volume of three metal samples are shown. Rank the samples according to their density.

Mass 50.0 q	Mass 50.0 g	Mass 50.0 g
Volume	Volume	Volume
7.9 mL	6.6 mL	9.2 mL

Question 23

The measured mass and volume of three metal samples are shown. Rank the samples according to their density.

Mass 50.0 g	Mass 50.0 g	Mass 50.0 g
Volume	Volume	Volume
9.2 mL	7.9 mL	6.6 mL

Question 24

The measured mass and volume of three metal samples are shown. Rank the samples according to their density.

Mass	Mass	Mass
50.0 g	50.0 g	50.0 g
Volume	Volume	Volume
6.6 mL	9.2 mL	7.9 mL

Question Group 9 Question 25

The measured mass and volume of three metal samples are shown. Rank the samples according to their density.

Mass	Mass	Mass
48.9 g	67.2 g	34.8 g
Volume	Volume	Volume
6.2 mL	9.8 mL	7.1 mL

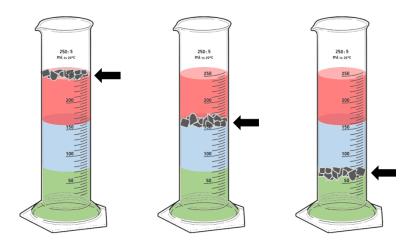
Question 26

The measured mass and volume of three metal samples are shown. Rank the samples according to their density.

Mass	Mass	Mass
34.8 g	48.9 g	67.2 g
Volume	Volume	Volume
7.1 mL	6.2 mL	9.8 mL

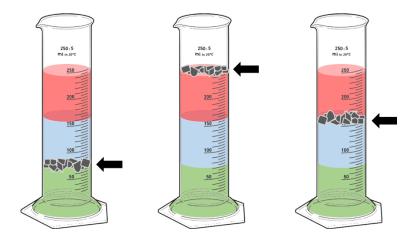
Question 27

The measured mass and volume of three metal samples are shown. Rank the samples according to their density.

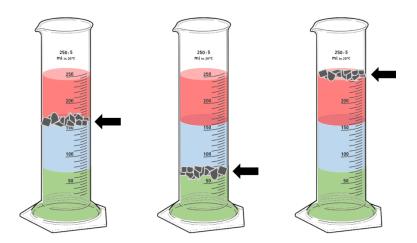

Mass	Mass	Mass
67.2 g	34.8 g	48.9 g
Volume	Volume	Volume
9.8 mL	7.1 mL	6.2 mL

Activity 3: Density Observations

Question Group 10

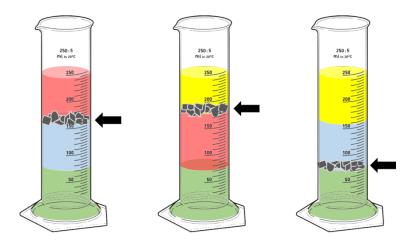

Question 28

A density column is prepared in a cylinder using three different liquids, each colored with a drop of food coloring. Three samples of household objects are shredded and dropped into the cylinder. The diagrams show where the shredded materials settle. Rank the samples according to their density.

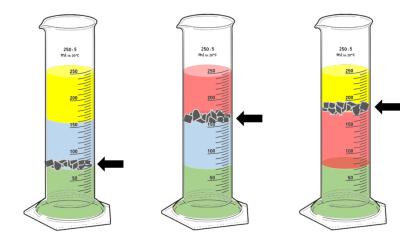


Question 29

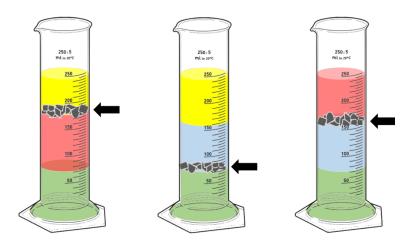
A density column is prepared in a cylinder using three different liquids, each colored with a drop of food coloring. Three samples of household objects are shredded and dropped into the cylinder. The diagrams show where the shredded materials settle. Rank the samples according to their density.



A density column is prepared in a cylinder using three different liquids, each colored with a drop of food coloring. Three samples of household objects are shredded and dropped into the cylinder. The diagrams show where the shredded materials settle. Rank the samples according to their density.

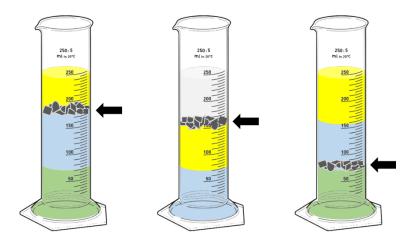

Question Group 11 Question 31

Four different liquids are used to prepare different density columns. Then three samples of household objects are shredded and dropped into each column. The diagrams show where the shredded materials settle. Rank the samples according to their density.

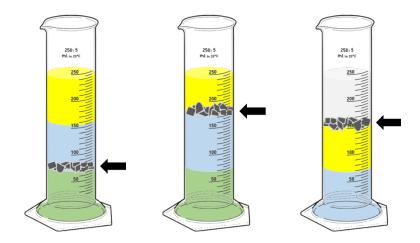


Question 32

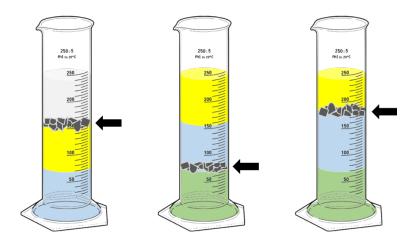
Four different liquids are used to prepare different density columns. Then three samples of household objects are shredded and dropped into each column. The diagrams show where the shredded materials settle. Rank the samples according to their density.



Four different liquids are used to prepare different density columns. Then three samples of household objects are shredded and dropped into each column. The diagrams show where the shredded materials settle. Rank the samples according to their density.

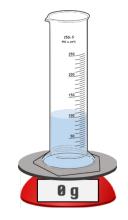

Question Group 12 Question 34

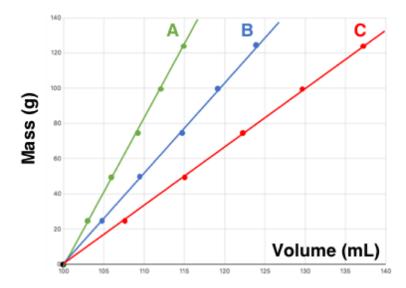
Five different liquids are used to prepare different density columns. Then three samples of household objects are shredded and dropped into each column. The diagrams show where the shredded materials settle. Rank the samples according to their density.



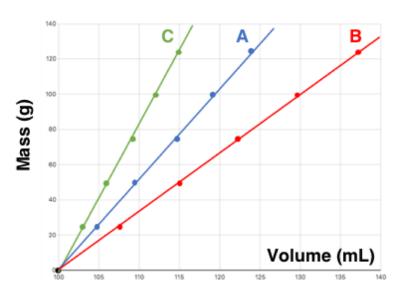
Question 35

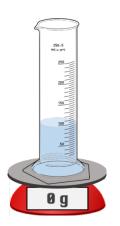
Five different liquids are used to prepare different density columns. Then three samples of household objects are shredded and dropped into each column. The diagrams show where the shredded materials settle. Rank the samples according to their density.

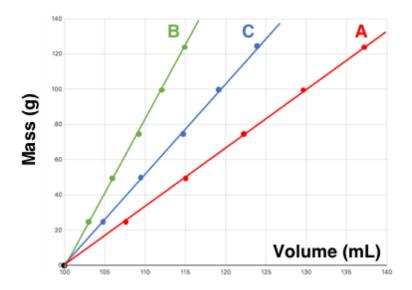


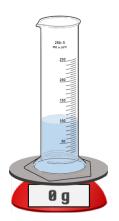

Five different liquids are used to prepare different density columns. Then three samples of household objects are shredded and dropped into each column. The diagrams show where the shredded materials settle. Rank the samples according to their density.

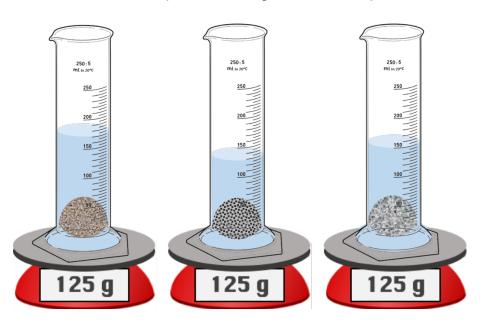
Question Group 13 Question 37

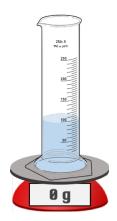

A graduated cylinder is filled with 100.0 mL of water. The cylinder is placed on a mass balance and tared (zeroed). In three different studies, samples of metal beads are added to the cylinder and their mass and the new volume reading are recorded sor several trials. Plots are constructed for each sample. Rank the samples according to their density.

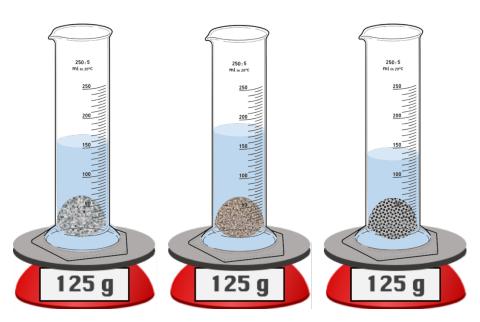


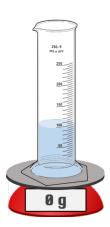

Question 38

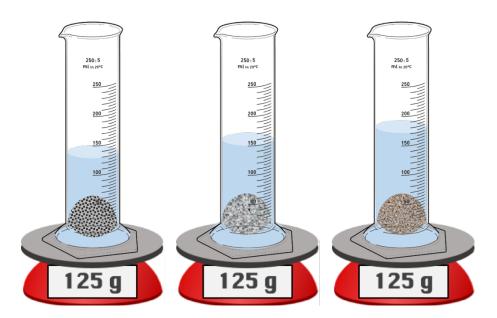

A graduated cylinder is filled with 100.0 mL of water. The cylinder is placed on a mass balance and tared (zeroed). In three different studies, samples of metal beads are added to the cylinder and their mass and the new volume reading are recorded. Plots are constructed for each sample. Rank the samples according to their density.

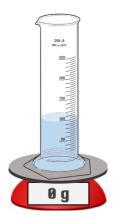

A graduated cylinder is filled with 100.0 mL of water. The cylinder is placed on a mass balance and tared (zeroed). In three different studies, samples of metal beads are added to the cylinder and their mass and the new volume reading are recorded. Plots are constructed for each sample. Rank the samples according to their density.



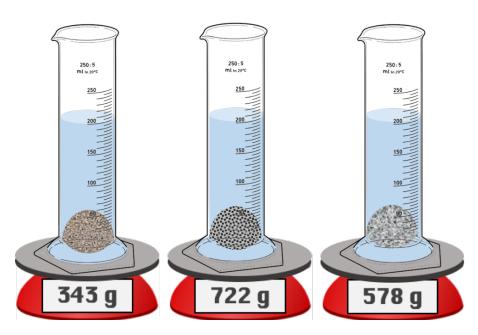

Question Group 14 Question 40

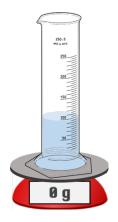

A graduated cylinder is filled with 100.0 mL of water. The cylinder is placed on a mass balance and tared (zeroed). In three different studies, samples of solid are added to the cylinder. The mass of solid and the new volume reading are shown. Rank the samples according to their density.

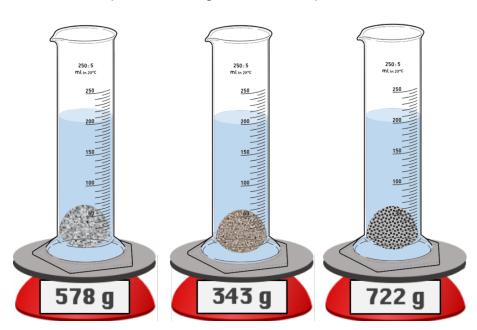


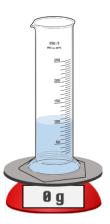


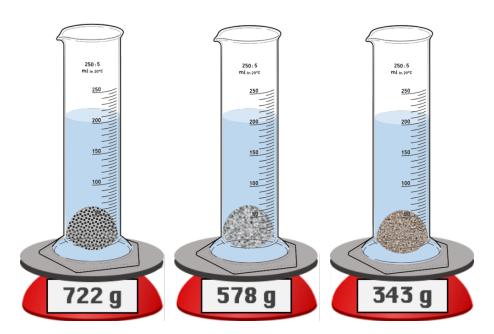
Question 41

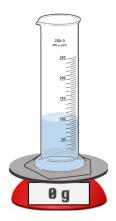





Question Group 15 Question 43


A graduated cylinder is filled with 100.0 mL of water. The cylinder is placed on a mass balance and tared (zeroed). In three different studies, samples of solid are added to the cylinder. The mass of solid and the new volume reading are shown. Rank the samples according to their density.





Question 44

