Bronsted-Lowry Acid Base Model

Activity 1: Fundamental Concepts Question Group 1 Question 1

The Bronsted-Lowry model defines acids and bases in terms of their tendency to donate or accept a proton. Which statement below best describes what the model means by "proton"?

A proton is a hydrogen ion (H⁺). A proton is a hydrogen atom (H). A proton is a hydroxide ion (OH⁻). A proton is a hydronium ion (H₃O⁺). A proton is a positively-charged electron.

Question Group 2 Question 2

Which statement describes the Bronsted-Lowry definition of an acid and a base?

An acid is a proton donor and a base is a proton acceptor. An acid is a proton acceptor and a base is a proton donor. An acid is a proton donor and a base is an electron donor. An acid is a proton acceptor and a base is an electron acceptor. An acid is a proton donor and a base is an electron acceptor.

Question Group 3

Question 3

Which statement describes the reaction that occurs when a Bronsted-Lowry acid dissolves in water?

The acid donates a proton to water to produce the hydronium ion (H_3O^+) . The acid donates a proton to water to produce the hydroxide ion (H_3O^+) . The acid donates a proton to water to produce the hydroxide ion (OH^-) . The acid accepts a proton from water to produce the hydronium ion (H_3O^+) . The acid accepts a proton from water to produce the hydroxide ion (OH^-) .

Question Group 4 Question 4

Which statement describes the hydronium and the hydroxide ions?

The hydronium ion is H_3O^+ and the hydroxide ion is OH^- . The hydronium ion is H_3O^+ and the hydroxide ion is H_3O^- . The hydronium ion is H^+ and the hydroxide ion is OH^- . The hydronium ion is OH^+ and the hydroxide ion is OH^- . The hydronium ion is OH^- and the hydroxide ion is H_3O^+ .

Question Group 5 Question 5

Which statement describes the reaction that occurs when a Bronsted-Lowry base dissolves in water?

The base accepts a proton from water to produce the hydroxide ion (OH⁻). The base accepts a proton from water to produce the hydronium ion (H₃O⁺). The base donates a proton to water to produce the hydroxide ion (OH⁻). The base donates a proton to water to produce the hydronium ion (H₃O⁺). The base donates a proton to water to produce the hydroxide ion (H₃O⁺). The base donates a proton to water to produce the hydroxide ion (H₃O⁺).

Question Group 6 Question 6

Weak acids are different than strong acids. Strong acids completely dissociate in water. Weak acids, having the generic formula HA, only partially dissociate in water. Which bar chart describes this weak acid behavior? (The bar charts represent final amounts of chemicals present in water after dissociation.)

Weak acids are different than strong acids. Strong acids completely dissociate in water. Weak acids, having the generic formula HA, only partially dissociate in water. Which bar chart describes this weak acid behavior? (The bar charts represent final amounts of chemicals present in water after dissociation.)

Weak acids are different than strong acids. Strong acids completely dissociate in water. Weak acids, having the generic formula HA, only partially dissociate in water. Which bar chart describes this weak acid behavior? (The bar charts represent final amounts of chemicals present in water after dissociation.)

Activity 2: Conjugate Acid-Base Pairs Question Group 7 Question 9

Consider the following acid-base reaction.

 $HBr_{(aq)} + H_2O_{(l)} \rightarrow Br_{(aq)} + H_3O_{(aq)}$

Which species is acting as the proton donor in this reaction? HBr H_2O Br- H_3O^+

Which species is acting as the proton acceptor in this reaction? HBr $$\mathrm{H}_2\mathrm{O}$$

Br⁻

H₃O+

Idenitfy the two sets of conjugate acid-base pairs.

HBr and H₂O Br⁻ and H₃O⁺ HBr and Br⁻ H₂O and H₃O⁺ HBr and H₃O⁺ H₂O and Br⁻

Consider the following acid-base reaction.

 $HCI_{(aq)}$ + $H_2O_{(l)}$ \rightarrow $CI^-_{(aq)}$ + $H_3O^+_{(aq)}$

Which species is acting as the proton donor in this reaction? HCl H₂O Cl⁻ H₃O⁺

Which species is acting as the proton acceptor in this reaction? HCl H₂O Cl⁻ H₃O⁺

Idenitfy the two sets of conjugate acid-base pairs. HCl and H₂O Cl⁻ and H₃O⁺ HCl and Cl⁻ H₂O and H₃O⁺ H₂O and H₃O⁺ H₂O and Cl⁻ H₂O and Cl⁻ HCl and H₃O⁺

Question Group 8 Question 11 Consider the following acid-base reaction.

 $HCN_{(aq)} + H_2O_{(l)} \rightarrow CN^{-}_{(aq)} + H_3O^{+}_{(aq)}$

Which species is acting as the proton donor in this reaction? HCN $$\rm H_2O$ CN^-$ H_3O^+$$

Which species is acting as the proton acceptor in this reaction? HCN $$\rm H_2O$ CN^-$ H_3O^+$$

Idenitfy the two sets of conjugate acid-base pairs. HCN and H₂O CN⁻ and H₃O⁺ HCN and CN⁻ H₂O and H₃O⁺ HCN and H₃O⁺ H₂O and CN⁻

Consider the following acid-base reaction.

 $HCIO_{3(aq)}$ + $H_2O_{(I)}$ \rightarrow $CIO_{3^-(aq)}$ + $H_3O^+_{(aq)}$

Which species is acting as the proton donor in this reaction? $HCIO_3$ H_2O $CIO_3^ H_3O^+$

Which species is acting as the proton acceptor in this reaction? $HCIO_3$ H_2O $CIO_3^ H_3O^+$

Idenitfy the two sets of conjugate acid-base pairs. $HCIO_3$ and H_2O CIO_3^- and H_3O^+ $HCIO_3$ and $CIO_3^ H_2O$ and H_3O^+ $HCIO_3$ and H_3O^+ H_2O and CIO_3^-

Question Group 9 Question 13 Consider the following acid-base reaction.

 $NH_{3(aq)} + H_2O(I) \rightarrow NH_4^+(aq) + OH^-(aq)$

Which species is acting as the proton donor in this reaction? NH_3 H_2O NH_4^+ OH^-

Which species is acting as the proton acceptor in this reaction? NH_3 H_2O NH_4^+ OH^-

Idenitfy the two sets of conjugate acid-base pairs. NH_3 and H_2O NH_4^+ and $OH^ NH_3$ and NH_4^+ H_2O and $OH^ NH_3$ and $OH^ H_2O$ and NH_4^+

Consider the following acid-base reaction.

 $C_5H_5N_{(aq)}$ + $H_2O_{(l)}$ \rightarrow $C_5H_5NH^+_{(aq)}$ + $OH^-_{(aq)}$

Which species is acting as the proton donor in this reaction? C_5H_5N H_2O $C_5H_5NH^+$ OH^-

Which species is acting as the proton acceptor in this reaction? C_5H_5N H_2O $C_5H_5NH^+$ OH^-

Idenitfy the two sets of conjugate acid-base pairs. C₅H₅N and H₂O C₅H₅NH⁺ and OH⁻ C₅H₅N and C₅H₅NH⁺ H₂O and OH⁻ C₅H₅N and OH⁻ H₂O and C₅H₅NH⁺

Question Group 10 Question 15

When an acid donates a proton to another substance, it turns into its **conjugate base**. And when a base accepts a proton from another substance, it turns into its **conjugate acid**.

If $HC_2H_3O_2$ acts as an acid, then what is its conjugate base? H_2O H_3O^+ $OH^ HC_2H_3O_2^+$ $HC_2H_3O_2^ H_2C_2H_3O_2^ H_2C_2H_3O_2^ C_2H_3O_2^ C_2H_3O_2^-$

If CH₃NH₂ acts as a base, then what is its conjugate acid? H₂O H₃O⁺ OH⁻ CH₃NH₂⁺ CH₃NH₂⁻ CH₃NH⁺ CH₃NH⁺ CH₃NH³-CH₃NH₃⁺

When an acid donates a proton to another substance, it turns into its **conjugate base**. And when a base accepts a proton from another substance, it turns into its **conjugate acid**.

If HClO₂ acts as an acid, then what is its conjugate base? H₂O H₃O⁺ OH⁻ HClO₂⁺ HClO₂⁻ H₂ClO₂⁺ H₂ClO₂⁻ ClO₂⁺ ClO₂⁻

If $C_2H_5NH_2$ acts as a base, then what is its conjugate acid? H_2O H_3O^+ $OH^ C_2H_5NH_2^+$ $C_2H_5NH_2^ C_2H_5NH_3^+$ $C_2H_5NH_3^ C_2H_5NH^+$ $C_2H_5NH^-$

Question Group 11 Question 17

When an acid donates a proton to another substance, it turns into its **conjugate base**. And when a base accepts a proton from another substance, it turns into its **conjugate acid**.

If HNO₃ acts as an acid, then what is its conjugate base? H₂O H₃O⁺ OH-HNO₃+ HNO₃- $H_2NO_3^+$ H₂NO₃-NO₃+ NO₃⁻ If (CH₃)₃N acts as a base, then what is its conjugate acid? H_2O H₃O⁺ OH-(CH₃)₃N⁺ (CH3)3N⁻ $(CH_3)_2CH_2N^+$ $(CH_3)_2CH_2N^-$ (CH₃)₃NH⁻ (CH₃)₃NH⁺

When an acid donates a proton to another substance, it turns into its **conjugate base**. And when a base accepts a proton from another substance, it turns into its **conjugate acid**.

If HClO₄ acts as an acid, then what is its conjugate base? H₂O H₃O⁺ OH⁻ HClO₄⁺ HClO₄⁻ H₂ClO₄⁻ H₂ClO₄⁺ H₂ClO₄⁻ ClO₄⁺ ClO₄⁻

H Construint det side de base, then what is its conju H $_2$ O H $_3$ O⁺ OH⁻ C $_6$ H $_5$ NH $_2^+$ C $_6$ H $_5$ NH $_2^-$ C $_6$ H $_5$ NH $_3^-$ C $_6$ H $_5$ NH $_3^-$ C $_6$ H $_5$ NH⁻ C $_6$ H $_5$ NH⁺

Question Group 12 Question 19

When an acid donates a proton to another substance, it turns into its **conjugate base**. And when a base accepts a proton from another substance, it turns into its **conjugate acid**.

If HSO_4^- acts as an acid, then what is its conjugate base? H_2O H_3O^+ $OH^ HSO_4$ HSO_4^{2-} $H_2SO_4^{2-}$ $H_2SO_4^{2-}$ SO_4 SO_4^{2-}

If HSO₄- acts as a base, then what is its conjugate acid? H₂O H₃O⁺ OH⁻ HSO₄ HSO₄²⁻ H₂SO₄ H₂SO₄²⁻ SO₄ SO₄

When an acid donates a proton to another substance, it turns into its **conjugate base**. And when a base accepts a proton from another substance, it turns into its **conjugate acid**.

If $HC_2O_4^-$ acts as an acid, then what is its conjugate base? H₂O H₃O⁺ OH⁻ HC₂O₄ HC₂O₄²⁻ H₂C₂O₄ H₂C₂O₄²⁻ C₂O₄ C₂O₄²⁻

If HC_2O_4 acts as a base, then what is its conjugate acid? H_2O H_3O^+ $OH^ HC_2O_4$ $HC_2O_4^{2-}$ $H_2C_2O_4$ $H_2C_2O_4^{2-}$ C_2O_4 $C_2O_4^{2-}$

Activity 3: Acid and Base Dissociation Equations Question Group 13 Question 21

Identify the dissociation equation for the dissociation of the weak acid hydrofluoric acid (HF) in water.

$$HF_{(aq)} + H_2O_{(l)} \rightarrow H_2F^{+}_{(aq)} + OH^{-}_{(aq)}$$

$$HF_{(aq)} + H_2O_{(l)} \rightarrow F^{-}_{(aq)} + H_3O^{+}_{(aq)}$$

$$HF_{(aq)} + H_2O_{(l)} \rightarrow F^{+}_{(aq)} + H_3O^{-}_{(aq)}$$

$$HF_{(aq)} + H_2O_{(l)} \rightarrow H^{+}_{(aq)} + FOH^{-}_{(aq)}$$

$$HF_{(aq)} + H_2O_{(l)} \rightarrow H^{+}_{(aq)} + FH_2O^{-}_{(aq)}$$

Question 22

Identify the dissociation equation for the dissociation of the weak acid hydrofluoric acid (HF) in water.

$$HF_{(aq)} + H_2O_{(l)} \rightarrow H^+_{(aq)} + FOH^-_{(aq)}$$

$$HF_{(aq)} + H_2O_{(l)} \rightarrow H_2F^+_{(aq)} + OH^-_{(aq)}$$

$$HF_{(aq)} + H_2O_{(l)} \rightarrow F^+_{(aq)} + H_3O^-_{(aq)}$$

$$HF_{(aq)} + H_2O_{(l)} \rightarrow F^-_{(aq)} + H_3O^+_{(aq)}$$

$$HF_{(aq)} + H_2O_{(l)} \rightarrow H^+_{(aq)} + FH_2O^-_{(aq)}$$

Identify the dissociation equation for the dissociation of the weak acid hydrofluoric acid (HF) in water.

Question Group 14 Question 24

Identify the dissociation equation for the dissociation of the weak acid nitrous acid (HNO₂) in water.

HNO _{2(aq)}	+	$H_2O_{(I)}$	→	NO ₂ +(aq)	+	$H_3O^{-}(aq)$
HNO _{2(aq)}	+	$H_2O_{(I)}$	→	NO2 ⁻ (aq)	+	$H_3O^+_{(aq)}$
HNO _{2(aq)}	+	$H_2O_{(I)}$	→	$H_2NO_{2^+(ac)}$	q)	+ OH-(aq)
HNO _{2(aq)}	+	$H_2O_{(I)}$	→	H+ _(aq) +	0	HNO _{2⁻(aq)}
HNO _{2(aq)}	+	$H_2O_{(I)}$	→	HN+ _(aq)	+	$H_2O_3^{-}(aq)$

Identify the dissociation equation for the dissociation of the weak acid nitrous acid (HNO₂) in water.

HNO _{2(aq)}	+	$H_2O_{(I)}$	→	$H_{(aq)} + OHNO_2(aq)$
HNO _{2(aq)}	+	$H_2O_{(I)}$	→	$H_2NO_2^+(aq)$ + $OH^-(aq)$
HNO _{2(aq)}	+	$H_2O_{(l)}$	→	$NO_{2^{-}(aq)}$ + $H_{3}O^{+}_{(aq)}$
HNO _{2(aq)}	+	$H_2O_{(l)}$	→	$HN^+_{(aq)}$ + $H_2O_3^{(aq)}$
HNO _{2(aq)}	+	$H_2O_{(I)}$	→	$NO_{2^{+}(aq)} + H_{3}O^{-}_{(aq)}$

Question 26

Identify the dissociation equation for the dissociation of the weak acid nitrous acid (HNO₂) in water.

$$HNO_{2(aq)} + H_{2}O_{(l)} \rightarrow NO_{2^{+}(aq)} + H_{3}O_{-(aq)}$$

$$HNO_{2(aq)} + H_{2}O_{(l)} \rightarrow H_{2}NO_{2^{+}(aq)} + OH_{-(aq)}$$

$$HNO_{2(aq)} + H_{2}O_{(l)} \rightarrow H^{+}(aq) + OHNO_{2^{-}(aq)}$$

$$HNO_{2(aq)} + H_{2}O_{(l)} \rightarrow HN^{+}(aq) + H_{2}O_{3^{-}(aq)}$$

$$HNO_{2(aq)} + H_{2}O_{(l)} \rightarrow NO_{2^{-}(aq)} + H_{3}O_{+(aq)}$$

Question Group 15 Question 27

Identify the dissociation equation for the dissociation of the weak acid chlorous acid $(HCIO_2)$ in water.

$$\begin{array}{rcl} \mathsf{HCIO}_{2(aq)} & + & \mathsf{H}_2\mathsf{O}_{(l)} & \twoheadrightarrow & \mathsf{CIO}_{2^-(aq)} & + & \mathsf{H}_3\mathsf{O}_{+(aq)} \\ \\ \mathsf{HCIO}_{2(aq)} & + & \mathsf{H}_2\mathsf{O}_{(l)} & \twoheadrightarrow & \mathsf{H}_2\mathsf{CIO}_{2^+(aq)} & + & \mathsf{OH}_{-(aq)} \\ \\ \mathsf{HCIO}_{2(aq)} & + & \mathsf{H}_2\mathsf{O}_{(l)} & \twoheadrightarrow & \mathsf{CIO}_{2^+(aq)} & + & \mathsf{H}_3\mathsf{O}_{-(aq)} \\ \\ \mathsf{HCIO}_{2(aq)} & + & \mathsf{H}_2\mathsf{O}_{(l)} & \twoheadrightarrow & \mathsf{H}_{+(aq)} & + & \mathsf{CIHO}_{3^-(aq)} \\ \\ \mathsf{HCIO}_{2(aq)} & + & \mathsf{H}_2\mathsf{O}_{(l)} & \twoheadrightarrow & \mathsf{H}_{+(aq)} & + & \mathsf{CIO}_{2^-(aq)} \end{array}$$

Question 28

Identify the dissociation equation for the dissociation of the weak acid chlorous acid (HClO₂) in water.

$$\begin{aligned} HCIO_{2(aq)} &+ H_{2}O_{(l)} \twoheadrightarrow H_{2}CIO_{2^{+}(aq)} &+ OH^{-}_{(aq)} \\ HCIO_{2(aq)} &+ H_{2}O_{(l)} \twoheadrightarrow H^{+}_{(aq)} &+ CIHO_{3^{-}(aq)} \\ HCIO_{2(aq)} &+ H_{2}O_{(l)} \twoheadrightarrow CIO_{2^{-}(aq)} &+ H_{3}O^{+}_{(aq)} \\ HCIO_{2(aq)} &+ H_{2}O_{(l)} \twoheadrightarrow CIO_{2^{+}(aq)} &+ H_{3}O^{-}_{(aq)} \\ HCIO_{2(aq)} &+ H_{2}O_{(l)} \twoheadrightarrow H^{+}_{(aq)} &+ CIO_{2^{-}(aq)} \end{aligned}$$

Identify the dissociation equation for the dissociation of the weak acid chlorous acid (HClO₂) in water.

$$\begin{array}{rcl} HCIO_{2(aq)} & + & H_{2}O_{(l)} & \twoheadrightarrow & H^{+}_{(aq)} & + & CIHO_{3^{-}(aq)} \\ HCIO_{2(aq)} & + & H_{2}O_{(l)} & \twoheadrightarrow & H_{2}CIO_{2^{+}(aq)} & + & OH^{-}_{(aq)} \\ HCIO_{2(aq)} & + & H_{2}O_{(l)} & \twoheadrightarrow & H^{+}_{(aq)} & + & CIO_{2^{-}(aq)} \\ HCIO_{2(aq)} & + & H_{2}O_{(l)} & \twoheadrightarrow & CIO_{2^{+}(aq)} & + & H_{3}O^{-}_{(aq)} \\ HCIO_{2(aq)} & + & H_{2}O_{(l)} & \twoheadrightarrow & CIO_{2^{-}(aq)} & + & H_{3}O^{+}_{(aq)} \end{array}$$

Question Group 16 Question 30

Identify the dissociation equation for the dissociation of the weak acid carbonic acid (H_2CO_3) in water.

$H_2CO_{3(aq)}$	+	$H_2O_{(I)}$	→	$HCO_{3^{-}(aq)} + H_{3}O^{+}_{(aq)}$
$H_2CO_{3(aq)}$	+	$H_2O_{(I)}$	→	$H_3CO_3^+(aq)$ + $OH^-(aq)$
$H_2CO_{3(aq)}$	+	$H_2O_{(l)}$	→	$CO_{3^{2-}(aq)}$ + $H_4O^{2+}_{(aq)}$
$H_2CO_{3(aq)}$	+	$H_2O_{(I)}$	→	$H_2^+(aq)$ + $CO_3OH^-(aq)$
H ₂ CO _{3(aq)}	+	$H_2O_{(l)}$	→	2 H ⁺ (aq) + CO ₃ ²⁻ (aq)

Identify the dissociation equation for the dissociation of the weak acid carbonic acid (H_2CO_3) in water.

$H_2CO_{3(aq)}$	+	$H_2O_{(I)}$	→	$H_3CO_3^+(aq)$ + $OH^-(aq)$
H ₂ CO _{3(aq)}	+	$H_2O_{(I)}$	→	2 H ⁺ (aq) + CO ₃ ²⁻ (aq)
$H_2CO_{3(aq)}$	+	$H_2O_{(l)}$	→	$CO_{3^{2}}(aq) + H_{4}O^{2+}(aq)$
$H_2CO_{3(aq)}$	+	$H_2O_{(l)}$	→	$HCO_{3}(aq) + H_{3}O(aq)$
H ₂ CO _{3(aq)}	+	$H_2O_{(I)}$	→	$H_{2^{+}(aq)}$ + $CO_{3}OH^{-}_{(aq)}$

Question 32

Identify the dissociation equation for the dissociation of the weak acid carbonic acid (H_2CO_3) in water.

$$\begin{array}{rcl} H_{2}CO_{3(aq)} & + & H_{2}O_{(l)} & \twoheadrightarrow & H_{2^{+}(aq)} & + & CO_{3}OH^{-}_{(aq)} \\ H_{2}CO_{3(aq)} & + & H_{2}O_{(l)} & \twoheadrightarrow & CO_{3^{2^{-}}(aq)} & + & H_{4}O^{2_{+}}_{(aq)} \\ H_{2}CO_{3(aq)} & + & H_{2}O_{(l)} & \twoheadrightarrow & 2 H^{+}_{(aq)} & + & CO_{3^{2^{-}}(aq)} \\ H_{2}CO_{3(aq)} & + & H_{2}O_{(l)} & \twoheadrightarrow & H_{3}CO_{3^{+}(aq)} & + & OH^{-}_{(aq)} \\ H_{2}CO_{3(aq)} & + & H_{2}O_{(l)} & \twoheadrightarrow & HCO_{3^{-}(aq)} & + & H_{3}O^{+}_{(aq)} \end{array}$$

Question Group 17 Question 33

Identify the dissociation equation for the dissociation of the weak base ammonia (NH_3) in water.

NH _{3(aq)}	+	$H_2O_{(I)}$	→	NH _{2⁻(aq)}	+ H ₃ O+ _(aq)
NH _{3(aq)}	+	$H_2O_{(I)}$	→	NH _{2⁻(aq)}	+ H ₃ O ⁺ (aq)
NH _{3(aq)}	+	$H_2O_{(I)}$	→	$NH_{4^{+}(aq)}$	+ OH ⁻ (aq)
NH _{3(aq)}	+	$H_2O_{(I)}$	→	$H_3O^+_{(aq)}$	+ NOH ⁻ (aq)
NH _{3(aq)}	+	$H_2O_{(I)}$	→	NH ₃ O+ _{(aq}) + OH ⁻ (aq)

Question 34

Identify the dissociation equation for the dissociation of the weak base ammonia (NH₃) in water.

NH _{3(aq)}	+	$H_2O_{(I)}$	→	$H_3O^+_{(aq)}$	+	NOH ⁻ (aq)
NH _{3(aq)}	+	$H_2O_{(I)}$	→	NH _{2⁻(aq)}	+	$H_3O^+_{(aq)}$
NH _{3(aq)}	+	$H_2O_{(l)}$	→	NH _{2⁻(aq)}	+	$H_3O^+_{(aq)}$
NH _{3(aq)}	+	$H_2O_{(I)}$	→	$NH_{4^{+}(aq)}$	+	· OH-(aq)
NH _{3(aq)}	+	$H_2O_{(I)}$	→	NH ₃ O+ _{(aq})	+ OH ⁻ (aq)

Identify the dissociation equation for the dissociation of the weak base ammonia (NH₃) in water.

NH _{3(aq)}	+	$H_2O_{(I)}$	→	NH_3O^+ (aq) -	⊢ OH⁻ _(aq)
NH _{3(aq)}	+	$H_2O_{(l)}$	→	$H_3O^+{}_{(aq)}$	+	NOH-(aq)
NH _{3(aq)}	+	$H_2O_{(l)}$	→	NH _{2⁻(aq)}	+	$H_3O^+_{(aq)}$
NH _{3(aq)}	+	$H_2O_{(I)}$	→	NH _{2⁻(aq)}	+	$H_3O^+_{(aq)}$
NH _{3(aq)}	+	$H_2O_{(I)}$	→	$NH_{4^{+}(aq)}$	+	OH ⁻ (aq)

Question Group 18 Question 36

Identify the dissociation equation for the dissociation of the weak base pyridine (C $_5H_5N$) in water.

$$C_{5}H_{5}N_{(aq)} + H_{2}O_{(l)} \rightarrow C_{5}H_{5}NH^{+}_{(aq)} + OH^{-}_{(aq)}$$

$$C_{5}H_{5}N_{(aq)} + H_{2}O_{(l)} \rightarrow H_{3}O^{+}_{(aq)} + C_{5}H_{5}NOH^{-}_{(aq)}$$

$$C_{5}H_{5}N_{(aq)} + H_{2}O_{(l)} \rightarrow C_{5}H_{5}NH^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$$

$$C_{5}H_{5}N_{(aq)} + H_{2}O_{(l)} \rightarrow C_{5}H_{6}^{+}_{(aq)} + NOH^{-}_{(aq)}$$

$$C_{5}H_{5}N_{(aq)} + H_{2}O_{(l)} \rightarrow C_{5}H_{4}N^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$$

Identify the dissociation equation for the dissociation of the weak base pyridine (C_5H_5N) in water.

$$C_{5}H_{5}N_{(aq)} + H_{2}O_{(l)} \rightarrow C_{5}H_{5}NH^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$$

$$C_{5}H_{5}N_{(aq)} + H_{2}O_{(l)} \rightarrow C_{5}H_{5}NH^{+}_{(aq)} + OH^{-}_{(aq)}$$

$$C_{5}H_{5}N_{(aq)} + H_{2}O_{(l)} \rightarrow H_{3}O^{+}_{(aq)} + C_{5}H_{5}NOH^{-}_{(aq)}$$

$$C_{5}H_{5}N_{(aq)} + H_{2}O_{(l)} \rightarrow C_{5}H_{4}N^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$$

$$C_{5}H_{5}N_{(aq)} + H_{2}O_{(l)} \rightarrow C_{5}H_{6}^{+}_{(aq)} + NOH^{-}_{(aq)}$$

Question 38

Identify the dissociation equation for the dissociation of the weak base pyridine (C_5H_5N) in water.

$$C_{5}H_{5}N_{(aq)} + H_{2}O_{(l)} \rightarrow H_{3}O^{+}_{(aq)} + C_{5}H_{5}NOH^{-}_{(aq)}$$

$$C_{5}H_{5}N_{(aq)} + H_{2}O_{(l)} \rightarrow C_{5}H_{5}NH^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$$

$$C_{5}H_{5}N_{(aq)} + H_{2}O_{(l)} \rightarrow C_{5}H_{6}^{+}_{(aq)} + NOH^{-}_{(aq)}$$

$$C_{5}H_{5}N_{(aq)} + H_{2}O_{(l)} \rightarrow C_{5}H_{5}NH^{+}_{(aq)} + OH^{-}_{(aq)}$$

$$C_{5}H_{5}N_{(aq)} + H_{2}O_{(l)} \rightarrow C_{5}H_{4}N^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$$