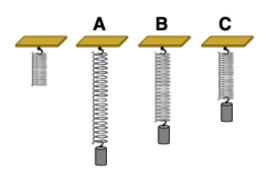
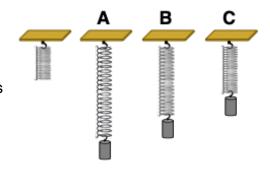
Vertical Springs: v and F


Activity 1: Speed Analysis

Question Group 1

Question 1

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. At what position does the mass have the greatest speed?


- a. Position A only.
- b. Position B only.
- c. Position C only.
- d. Positions A and C.

Question 2

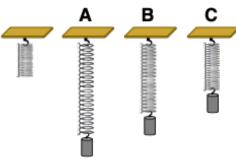
A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. At what position does the mass have the greatest speed?


- a. Positions A and C.
- b. Position A only.
- c. Position B only.
- d. Position C only.

Question 3

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. At what position does the mass have the greatest speed?

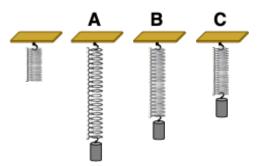
- a. Position A only.
- b. Position C only.
- c. Positions A and C.
- d. Position B only.


Question Group 2 Question 4

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. At what position does the mass have a speed of 0 m/s?

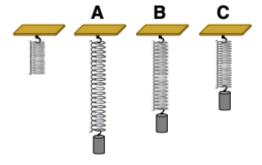
- have a speed of 0 m/s?

 a. Position A only.


 b. Position B only.
- c. Position C only.
- d. Positions A and C.

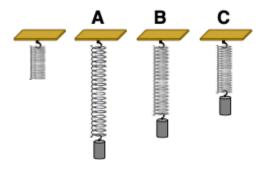
Question 5

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. At what position does the mass have a speed of 0 m/s?


- a. Positions A and C.
- b. Position A only.
- c. Position B only.
- d. Position C only.

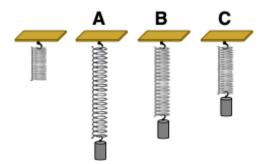
Question 6

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. At what position does the mass have a speed of 0 m/s?


- a. Position A only.
- b. Position C only.
- c. Positions A and C.
- d. Position B only.

Question Group 3 Question 7

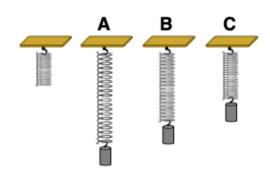
A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. In what manner does the speed change as the mass moves from A to B?


- a. Speed increases.
- b. Speed decreases.
- c. Speed remains unchanged.
- d. Speed first increases and then decreases.
- e. Speed first decreases and then increases.

Question 8

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. In what manner does the speed change as the mass moves from A to B?

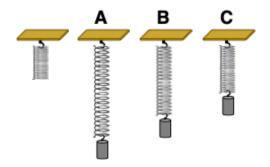
- a. Speed remains unchanged.
- b. Speed increases.
- c. Speed first increases and then decreases.
- d. Speed decreases.
- e. Speed first decreases and then increases.


Question 9

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. In what manner does the speed change as the mass moves from C to B?

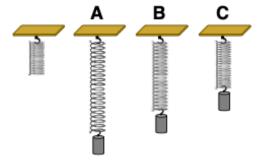
- a. Speed increases.
- b. Speed decreases.
- c. Speed remains unchanged.
- d. Speed first increases and then decreases.
- e. Speed first decreases and then increases.

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. In what manner does the speed change as the mass moves from C to B?

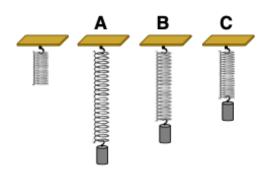

- a. Speed remains unchanged.
- b. Speed increases.
- c. Speed first increases and then decreases.
- d. Speed decreases.
- e. Speed first decreases and then increases.

Question Group 4 Question 11

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. In what manner does the speed change as the mass moves from B to A?

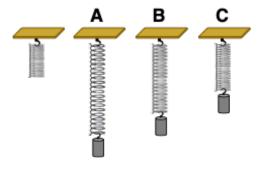

- a. Speed increases.
- b. Speed decreases.
- c. Speed remains unchanged.
- d. Speed first increases and then decreases.
- e. Speed first decreases and then increases.

Question 12


A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. In what manner does the speed change as the mass moves from B to A?

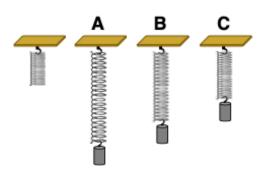
- a. Speed remains unchanged.
- b. Speed increases.
- c. Speed first increases and then decreases.
- d. Speed decreases.
- e. Speed first decreases and then increases.

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. In what manner does the speed change as the mass moves from B to C?


- a. Speed increases.
- b. Speed decreases.
- c. Speed remains unchanged.
- d. Speed first increases and then decreases.
- e. Speed first decreases and then increases.

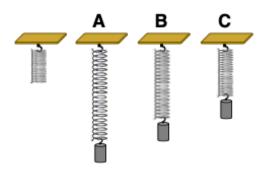
Question 14

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. In what manner does the speed change as the mass moves from B to C?


- a. Speed remains unchanged.
- b. Speed increases.
- c. Speed first increases and then decreases.
- d. Speed decreases.
- e. Speed first decreases and then increases.

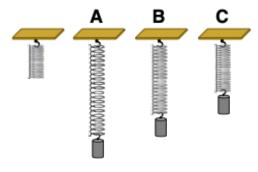
Activity 2: Force Analysis Question Group 5 Question 15

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. At what position does the mass experience the greatest net force?


- a. Position A only.
- b. Position B only.
- c. Position C only.
- d. Positions A and C.

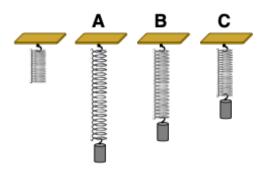
Question 16

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. At what position does the mass experience the greatest net force?


- a. Positions A and C.
- b. Position A only.
- c. Position B only.
- d. Position C only.

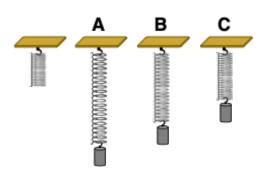
Question 17

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. At what position does the mass experience the greatest net force?


- a. Position A only.
- b. Position C only.
- c. Positions A and C.
- d. Position B only.

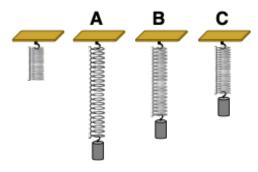
Question Group 6 Question 18

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. At what position does the mass experience a net force of 0 N?


- a. Position A only.
- b. Position B only.
- c. Position C only.
- d. Positions A and C.

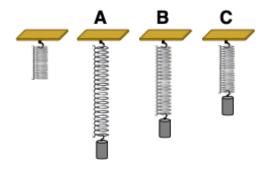
Question 19

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. At what position does the mass experience a net force of 0 N


- a. Positions A and C.
- b. Position A only.
- c. Position B only.
- d. Position C only.

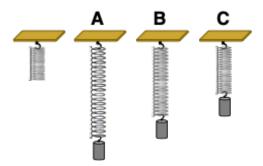
Question 20

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. At what position does the mass experience a net force of 0 N


- a. Position A only.
- b. Position C only.
- c. Positions A and C.
- d. Position B only.

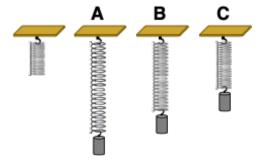
Question Group 7 Question 21

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. In what manner does the net force change as the mass moves from A to B?

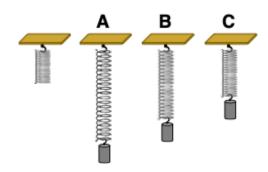

- a. Net force increases.
- b. Net force decreases.
- c. Net force remains unchanged.
- d. Net force first increases and then decreases.
- e. Net force first decreases and then increases.

Question 22

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. In what manner does the net force change as the mass moves from A to B?

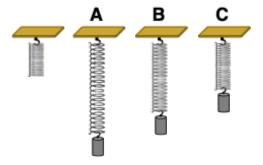

- a. Net force remains unchanged.
- b. Net force increases.
- c. Net force first increases and then decreases.
- d. Net force decreases.
- e. Net force first decreases and then increases.

Question 23


A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. In what manner does the net force change as the mass moves from C to B?

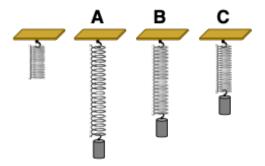
- a. Net force increases.
- b. Net force decreases.
- c. Net force remains unchanged.
- d. Net force first increases and then decreases.
- e. Net force first decreases and then increases.

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. In what manner does the net force change as the mass moves from C to B?

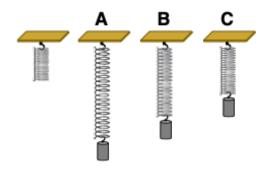

- a. Net force remains unchanged.
- b. Net force increases.
- c. Net force first increases and then decreases.
- d. Net force decreases.
- e. Net force first decreases and then increases.

Question Group 8 Question 25

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. In what manner does the net force change as the mass moves from B to A?

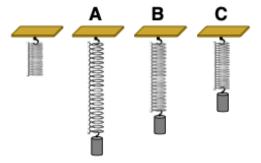

- a. Net force increases.
- b. Net force decreases.
- c. Net force remains unchanged.
- d. Net force first increases and then decreases.
- e. Net force first decreases and then increases.

Question 26

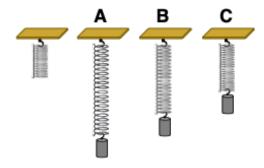

A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. In what manner does the net force change as the mass moves from B to A?

- a. Net force remains unchanged.
- b. Net force increases.
- c. Net force first increases and then decreases.
- d. Net force decreases.
- e. Net force first decreases and then increases.

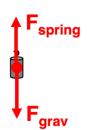
A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. In what manner does the net force change as the mass moves from B to C?


- a. Net force increases.
- b. Net force decreases.
- c. Net force remains unchanged.
- d. Net force first increases and then decreases.
- e. Net force first decreases and then increases.

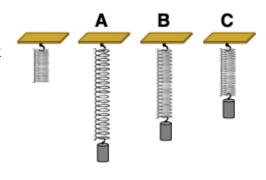
Question 28


A spring is attached to a ceiling hook. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. In what manner does the net force change as the mass moves from B to C?

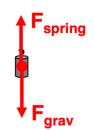
- a. Net force remains unchanged.
- b. Net force increases.
- c. Net force first increases and then decreases.
- d. Net force decreases.
- e. Net force first decreases and then increases.

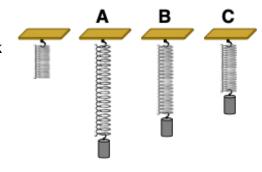

Activity 3: Free-Body Diagrams Question Group 9 Question 29

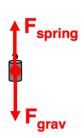
A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. Which free-body diagram represents the type, relative size and direction of the forces acting on the mass at location A?



Question 30


A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. Which free-body diagram represents the type, relative size and direction of the forces acting on the mass at location A?

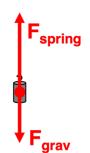


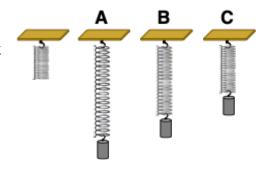


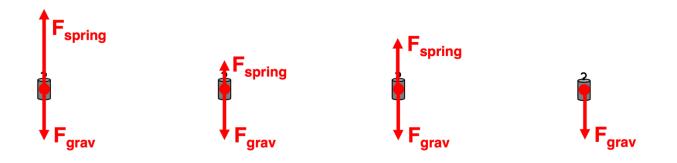


A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. Which free-body diagram represents the type, relative size and direction of the forces acting on the mass at location A?

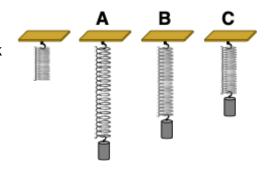
Question 32

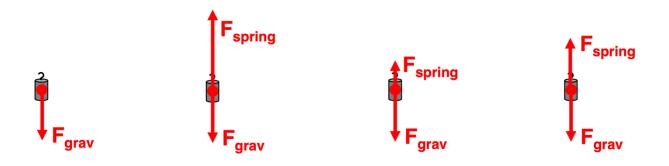

A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. Which free-body diagram represents the type, relative size and direction of the forces acting on the mass at location A?

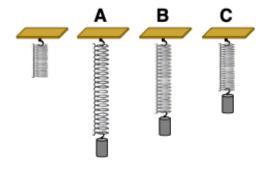


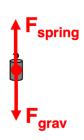


Question Group 10 Question 33

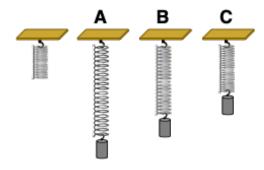

A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. Which free-body diagram represents the type, relative size and direction of the forces acting on the mass at location B?

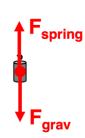


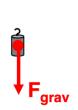

Question 34

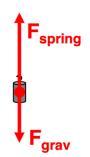

A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. Which free-body diagram represents the type, relative size and direction of the forces acting on the mass at location B?

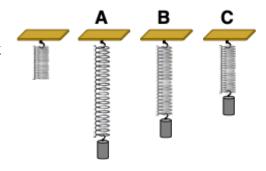
A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. Which free-body diagram represents the type, relative size and direction of the forces acting on the mass at location B?

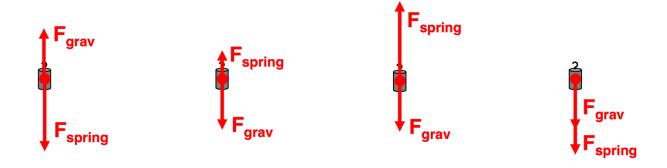




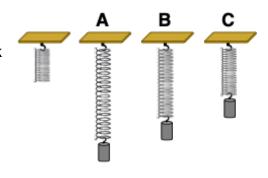

Question 36

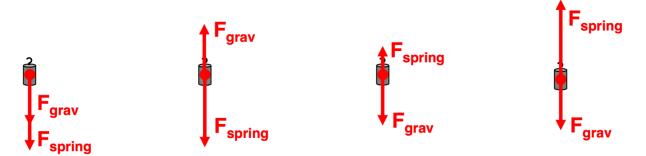

A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. Which free-body diagram represents the type, relative size and direction of the forces acting on the mass at location B?

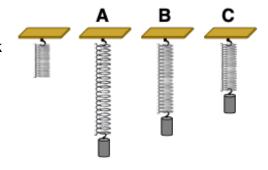


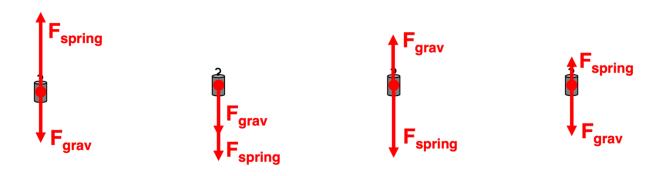


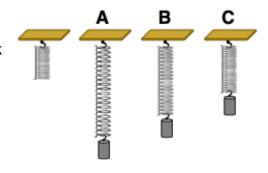
Question Group 11 Question 37

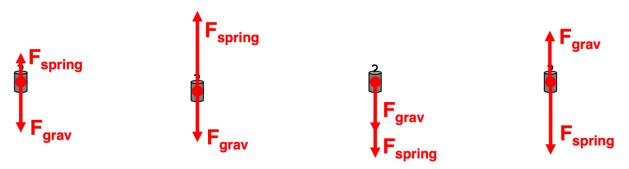

A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. Which free-body diagram represents the type, relative size and direction of the forces acting on the mass at location C?



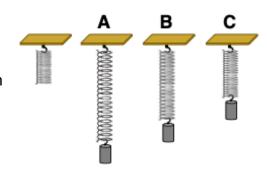

Question 38


A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. Which free-body diagram represents the type, relative size and direction of the forces acting on the mass at location C?


A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. Which free-body diagram represents the type, relative size and direction of the forces acting on the mass at location C?



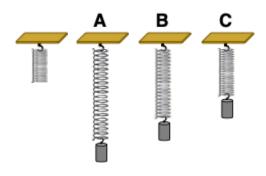
Question 40


A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. Which free-body diagram represents the type, relative size and direction of the forces acting on the mass at location C?

Question Group 12 Question 41

A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. What can be concluded about the **magnitude** of the gravity and spring forces as the mass moves from A to B?

The force of gravity ...

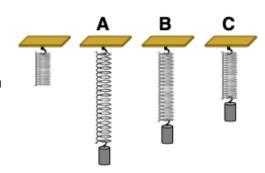

- a. increases
- b. decreases
- c. remains the same

The spring force ...

- a. increases
- b. decreases
- c. remains the same

Question 42

A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. What can be concluded about the **magnitude** of the gravity and spring forces as the mass moves from A to B?



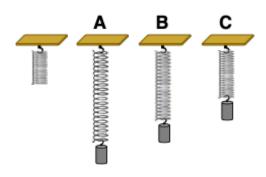
The force of gravity ...

- a. remains the same
- b. increases
- c. decreases

- a. remains the same
- b. increases
- c. decreases

A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. What can be concluded about the **magnitude** of the gravity and spring forces as the mass moves from C to B?

The force of gravity ...

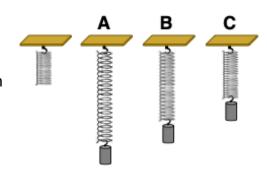

- a. increases
- b. decreases
- c. remains the same

The spring force ...

- a. increases
- b. decreases
- c. remains the same

Question 44

A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. What can be concluded about the **magnitude** of the gravity and spring forces as the mass moves from C to B?


The force of gravity ...

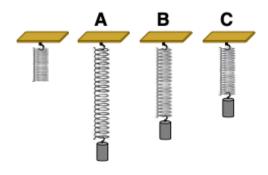
- a. remains the same
- b. increases
- c. decreases

- a. remains the same
- b. increases
- c. decreases

Question Group 13 Question 45

A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. What can be concluded about the **magnitude** of the gravity and spring forces as the mass moves from B to A?

The force of gravity ...

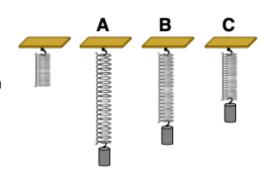

- a. increases
- b. decreases
- c. remains the same

The spring force ...

- a. increases
- b. decreases
- c. remains the same

Question 46

A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. What can be concluded about the **magnitude** of the gravity and spring forces as the mass moves from B to A?



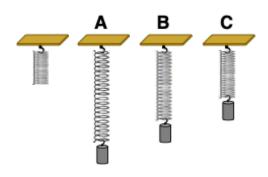
The force of gravity ...

- a. remains the same
- b. increases
- c. decreases

- a. remains the same
- b. increases
- c. decreases

A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. What can be concluded about the **magnitude** of the gravity and spring forces as the mass moves from B to C?

The force of gravity ...

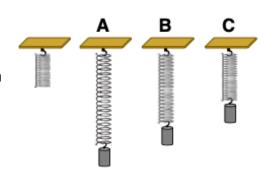

- a. increases
- b. decreases
- c. remains the same

The spring force ...

- a. increases
- b. decreases
- c. remains the same

Question 48

A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. What can be concluded about the **magnitude** of the gravity and spring forces as the mass moves from B to C?


The force of gravity ...

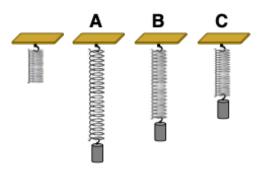
- a. remains the same
- b. increases
- c. decreases

- a. remains the same
- b. increases
- c. decreases

Question Group 14 Question 49

A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. What can be concluded about the **direction** of the gravity and spring forces as the mass moves from A to C?

The force of gravity ...

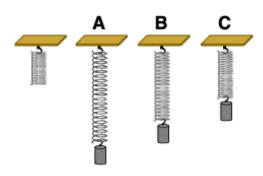

- a. Always up
- b. Always down
- c. First down; then up
- d. First up; then down

The spring force ...

- a. Always up
- b. Always down
- c. First down; then up
- d. First up; then down

Question 50

A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. What can be concluded about the **direction** of the gravity and spring forces as the mass moves from A to C?



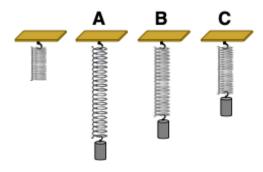
The force of gravity ...

- a. Always up
- b. First up; then down
- c. Always down
- d. First down; then up

- a. Always up
- b. First up; then down
- c. Always down
- d. First down; then up

A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. What can be concluded about the **direction** of the gravity and spring forces as the mass moves from C to A?

The force of gravity ...


- a. Always up
- b. Always down
- c. First down; then up
- d. First up; then down

The spring force ...

- a. Always up
- b. Always down
- c. First down; then up
- d. First up; then down

Question 52

A spring is attached to a ceiling hook as shown. A mass is attached to the spring and pulled down to position A. It is released from rest and vibrates back and forth between positions A and C. Position B is the equilibrium position. What can be concluded about the **direction** of the gravity and spring forces as the mass moves from C to A?

The force of gravity ...

- a. Always up
- b. First up; then down
- c. Always down
- d. First down; then up

- a. Always up
- b. First up; then down
- c. Always down
- d. First down; then up