Frequency and Period of a Pendulum

Activity 1 Frequency and Period Concepts Question Group 1		
	uestion Group 1 uestion 1	
	pendulum's frequency describes	
	how often it vibrates back and forth.	
	how fast it moves from one extreme to the other	
	how far it moves from its resting position to an extreme position	
Λ		
	d a pendulum's period describes	
	how many times it vibrates back and forth how much time it takes to complete one vibration	
	how much distance it travels during one vibration	
٥.	now much distance it travels during one vibration	
	uestion 2	
	pendulum's frequency describes	
	how far it moves from its resting position to an extreme position	
	how often it vibrates back and forth. how fast it moves from one extreme to the other	
٥.	now last it moves nom one extreme to the other	
٩r	d a pendulum's period describes	
	how much distance it travels during one vibration	
Э.	how many times it vibrates back and forth	
С.	how much time it takes to complete one vibration	
Qι	uestion 3	
Αį	pendulum's period describes	
a.	how many times it vibrates back and forth	
	how much time it takes to complete one vibration	
С.	how much distance it travels during one vibration	
Ar	d a pendulum's frequency describes	
	how often it vibrates back and forth.	
	how fast it moves from one extreme to the other	
	how far it moves from its resting position to an extreme position	

Question 4 A pendulum's period describes a. how much time it takes to complete one vibration b. how much distance it travels during one vibration c. how many times it vibrates back and forth
And a pendulum's frequency describes a. how fast it moves from one extreme to the other b. how far it moves from its resting position to an extreme position c. how often it vibrates back and forth.
Question Group 2 Question 5 The unit of frequency is a. meter per second b. cycles per second c. joule per second
And the unit of period is a. meter b. second c. oscillations
Question 6 The unit of frequency is a. joule per second b. meter per second c. cycles per second
And the unit of period is a. second b. oscillations c. meter
Question 7 The unit of period is a. oscillations

b. meterc. second

And the unit of frequency isa. joule per second b. meter per second c. cycles per second
Question 8 The unit of period is a. second b. oscillations c. meter
And the unit of frequency is

Question Group 3

a. joule per secondb. meter per secondc. cycles per second

Question 9

A pendulum makes 20 complete vibrational cycles in 40 seconds. This means that

- a. the frequency is 2.0 Hertz and the period is 20 seconds
- b. the frequency is 0.5 Hertz and the period is 2.0 seconds
- c. the frequency is 20 seconds and the period is 2.0 Hertz
- d. the frequency is 2.0 seconds and the period is 0.5 Hertz

Question 10

A pendulum makes 40 complete vibrational cycles in 20 seconds. This means that

- a. the frequency is 2.0 Hertz and the period is 40 seconds
- b. the frequency is 2.0 Hertz and the period is 0.5 seconds
- c. the frequency is 40 seconds and the period is 0.5 Hertz
- d. the frequency is 2.0 seconds and the period is 0.5 Hertz

Question 11

A pendulum makes 20 complete vibrational cycles in 40 seconds. This means that

- a. the period is 2.0 Hertz and the frequency is 20 seconds
- b. the period is 0.5 Hertz and the frequency is 2.0 seconds
- c. the period is 20 seconds the and frequency is 2.0 Hertz

d.	the period is 2.0 seconds and the frequency is 0.5 Hertz	
	uestion 12 pendulum makes 40 complete vibrational cycles in 20 seconds.	This means that
b. c.	the period is 0.5 Hertz and the frequency is 40 seconds the period is 0.5 Hertz and the frequency is 2.0 seconds the period is 40 seconds and the frequency is 2.0 Hertz the period is 0.5 seconds and the frequency is 2.0 Hertz	
Qu Th a. b. c.	uestion Group 4 uestion 13 ne period of a pendulum's vibrations depends mostly upon the mass of the bob the width of the string from which it is suspended the length of the string from which it is supspended the amplitude of motion with which it swings	Choose one.
Tha. b. c.	uestion 14 ne period of a pendulum's vibrations depends mostly upon the amplitude of motion with which it swings the mass of the bob the width of the string from which it is suspended the length of the string from which it is supspended	Choose one.
Tha. b. c.	uestion 15 ne period of a pendulum's vibrations depends mostly upon the length of the string from which it is supspended the amplitude of motion with which it swings the mass of the bob the width of the string from which it is suspended	Choose one.
Tha. b. c.	uestion 16 ne period of a pendulum's vibrations depends mostly upon the width of the string from which it is suspended the length of the string from which it is supspended the amplitude of motion with which it swings the mass of the bob	Choose one.

Question Group 5

Question 17

As the frequency of a pendulum's vibrations increases, ...

- a. the period of vibration also increases.
- b. the period of vibration decreases.
- c. the period of vibration is unaffected.
- d. the period of vibration increases at first; then it decreases.

Question 18

As the frequency of a pendulum's vibrations increases, ...

- a. the period of vibration increases at first; then it decreases.
- b. the period of vibration also increases.
- c. the period of vibration decreases.
- d. the period of vibration is unaffected.

Question 19

As the frequency of a pendulum's vibrations increases, ...

- a. the period of vibration is unaffected.
- b. the period of vibration increases at first; then it decreases.
- c. the period of vibration also increases.
- d. the period of vibration decreases.

Question 20

As the frequency of a pendulum's vibrations increases, ...

- a. the period of vibration decreases.
- b. the period of vibration also increases.
- c. the period of vibration increases at first; then it decreases.
- d. the period of vibration is unaffected.

Question Group 6

Question 21

Which one change is certain to increase the period of a pendulum's vibrations?

- a. Decrease the mass of the pendulum bob.
- b. Increase the angle theta through which it swings.
- c. Increase the length of the string upon which the bob is suspended.
- d. Use a heavier string to suspend the pendulum bob on.

Which one change is certain to increase the period of a pendulum's vibrations?

- a. Increase the angle theta through which it swings.
- b. Increase the length of the string upon which the bob is suspended.
- c. Use a heavier string to suspend the pendulum bob on.
- d. Decrease the mass of the pendulum bob.

Question 23

Which one change is certain to decrease the period of a pendulum's vibrations?

- a. Increase the mass of the pendulum bob.
- b. Decrease the angle theta through which it swings.
- c. Decrease the length of the string upon which the bob is suspended.
- d. Use a lighter string to suspend the pendulum bob on.

Question 24

Which one change is certain to decrease the period of a pendulum's vibrations?

- a. Decrease the angle theta through which it swings.
- b. Decrease the length of the string upon which the bob is suspended.
- c. Use a lighter string to suspend the pendulum bob on.
- d. Increase the mass of the pendulum bob.

Activity 2 Frequency and Period Ranking Tasks Question Group 7 Question 25

Anna Litical is studying the effect of string length (L), bob mass (m), and swing angle (Θ) upon the period of a pendulum. The parameter values used for three trials are shown. Rank the three trials in order of their period (T).

Trial 1	Trial 2	Trial 3
L = 1.25 m	L = 1.10 m	L = 1.00 m
m = 0.250 kg	m = 0.250 kg	m = 0.250 kg
$\Theta = 30^{\circ}$	$\Theta = 20^{\circ}$	$\Theta = 45^{\circ}$

Anna Litical is studying the effect of string length (L), bob mass (m), and swing angle (Θ) upon the period of a pendulum. The parameter values used for three trials are shown. Rank the three trials in order of their period (T).

Trial 1	Trial 2	Trial 3
L = 1.00 m	L = 1.25 m	L = 1.10 m
m = 0.250 kg	m = 0.250 kg	m = 0.250 kg
$\Theta = 45^{\circ}$	$\Theta = 30^{\circ}$	$\Theta = 20^{\circ}$

Question 27

Anna Litical is studying the effect of string length (L), bob mass (m), and swing angle (Θ) upon the period of a pendulum. The parameter values used for three trials are shown. Rank the three trials in order of their period (T).

Trial 1	Trial 2	Trial 3
L = 1.10 m	L = 1.00 m	L = 1.25 m
m = 0.250 kg	m = 0.250 kg	m = 0.250 kg
$\Theta = 20^{\circ}$	$\Theta = 45^{\circ}$	$\Theta = 30^{\circ}$

Question 28

Anna Litical is studying the effect of string length (L), bob mass (m), and swing angle (Θ) upon the period of a pendulum. The parameter values used for three trials are shown. Rank the three trials in order of their period (T).

Trial 1	Trial 2	Trial 3
L = 1.10 m	L = 1.25 m	L = 1.00 m
m = 0.250 kg	m = 0.250 kg	m = 0.250 kg
$\Theta = 20^{\circ}$	$\Theta = 30^{\circ}$	$\Theta = 45^{\circ}$

Question Group 8 Question 29

Anna Litical is studying the effect of string length (L), bob mass (m), and swing angle (Θ) upon the period of a pendulum. The parameter values used for three trials are shown. Rank the three trials in order of their period (T).

Trial 1	Trial 2	Trial 3
L = 85.0 cm	L = 65.0 cm	L = 50.0 cm
m = 0.500 kg	m = 0.500 kg	m = 0.500 kg
$\Theta = 20^{\circ}$	$\Theta = 25^{\circ}$	$\Theta = 40^{\circ}$

Question 30

Anna Litical is studying the effect of string length (L), bob mass (m), and swing angle (Θ) upon the period of a pendulum. The parameter values used for three trials are shown. Rank the three trials in order of their period (T).

Trial 1	Trial 2	Trial 3
L = 50.0 cm	L = 85.0 cm	L = 65.0 cm
m = 0.500 kg	m = 0.500 kg	m = 0.500 kg
$\Theta = 40^{\circ}$	$\Theta = 20^{\circ}$	$\Theta = 25^{\circ}$

Question 31

Anna Litical is studying the effect of string length (L), bob mass (m), and swing angle (Θ) upon the period of a pendulum. The parameter values used for three trials are shown. Rank the three trials in order of their period (T).

Trial 1	Trial 2	Trial 3
L = 65.0 cm	L = 50.0 cm	L = 85.0 cm
m = 0.500 kg	m = 0.500 kg	m = 0.500 kg
$\Theta = 25^{\circ}$	$\Theta = 40^{\circ}$	$\Theta = 20^{\circ}$

Question 32

Anna Litical is studying the effect of string length (L), bob mass (m), and swing angle (Θ) upon the period of a pendulum. The parameter values used for three trials are shown. Rank the three trials in order of their period (T).

Trial 1	Trial 2	Trial 3
L = 50.0 cm	L = 65.0 cm	L = 85.0 cm
m = 0.500 kg	m = 0.500 kg	m = 0.500 kg
$\Theta = 40^{\circ}$	$\Theta = 25^{\circ}$	$\Theta = 20^{\circ}$

Question Group 9 Question 33

Anna Litical is studying the effect of string length (L), bob mass (m), and swing angle (Θ) upon the frequency of a pendulum's vibrations. The parameter values used for three trials are shown. Rank the three trials in order of their frequency (f).

Trial 1	Trial 2	Trial 3
L = 1.05 m	L = 1.25 m	L = 1.40 m
m = 0.400 kg	m = 0.500 kg	m = 0.250 kg
$\Theta = 35^{\circ}$	$\Theta = 35^{\circ}$	$\Theta = 35^{\circ}$

Question 34

Anna Litical is studying the effect of string length (L), bob mass (m), and swing angle (Θ) upon the frequency of a pendulum's vibrations. The parameter values used for three trials are shown. Rank the three trials in order of their frequency (f).

Trial 1	Trial 2	Trial 3
L = 1.40 m	L = 1.05 m	L = 1.25 m
m = 0.250 kg	m = 0.400 kg	m = 0.500 kg
$\Theta = 35^{\circ}$	$\Theta = 35^{\circ}$	$\Theta = 35^{\circ}$

Anna Litical is studying the effect of string length (L), bob mass (m), and swing angle (Θ) upon the frequency of a pendulum's vibrations. The parameter values used for three trials are shown. Rank the three trials in order of their frequency (f).

Trial 1	Trial 2	Trial 3
L = 1.25 m	L = 1.40 m	L = 1.05 m
m = 0.500 kg	m = 0.250 kg	m = 0.400 kg
$\Theta = 35^{\circ}$	$\Theta = 35^{\circ}$	$\Theta = 35^{\circ}$

Question 36

Anna Litical is studying the effect of string length (L), bob mass (m), and swing angle (Θ) upon the frequency of a pendulum's vibrations. The parameter values used for three trials are shown. Rank the three trials in order of their frequency (f).

Trial 1	Trial 2	Trial 3
L = 1.05 m	L = 1.40 m	L = 1.25 m
m = 0.400 kg	m = 0.250 kg	m = 0.500 kg
$\Theta = 35^{\circ}$	$\Theta = 35^{\circ}$	$\Theta = 35^{\circ}$

Activity 3 Proportional Reasoning Question Group 10 Question 37

Noah Formula is conducting an experimental study of the **period** of a pendulum. If Noah **increases the length of the string by a factor of two**, then he can expect the **period** of the pendulum to ...

- a. increase by a factor of 2.
- b. increase by a factor of 4.
- c. increase by a factor of the square root of 2.
- d. decrease by a factor of 2.
- e. decrease by a factor of 4.
- f. decrease by a factor of the square root of 2.
- g. not be affected by the length change.

Noah Formula is conducting an experimental study of the **period** of a pendulum. If Noah **increases the length of the string by a factor of two**, then he can expect the **period** of the pendulum to ...

- a. increase by a factor of 2.
- b. decrease by a factor of 2.
- c. increase by a factor of the square root of 2.
- d. decrease by a factor of the square root of 2.
- e. increase by a factor of 4.
- f. decrease by a factor of 4.
- g. not be affected by the length change.

Question 39

Noah Formula is conducting an experimental study of the **period** of a pendulum. If Noah **decreases the length of the string by a factor of two**, then he can expect the **period** of the pendulum to ...

- a. increase by a factor of 2.
- b. increase by a factor of 4.
- c. increase by a factor of the square root of 2.
- d. decrease by a factor of 2.
- e. decrease by a factor of 4.
- f. decrease by a factor of the square root of 2.
- g. not be affected by the length change.

Question 40

Noah Formula is conducting an experimental study of the **period** of a pendulum. If Noah **decreases the length of the string by a factor of two**, then he can expect the **period** of the pendulum to ...

- a. increase by a factor of 2.
- b. decrease by a factor of 2.
- c. increase by a factor of the square root of 2.
- d. decrease by a factor of the square root of 2.
- e. increase by a factor of 4.
- f. decrease by a factor of 4.
- g. not be affected by the length change.

Question Group 11
Question 41

Noah Formula is conducting an experimental study of the **period** of a pendulum. If Noah **increases the length of the string by a factor of three**, then he can expect the **period** of the pendulum to ...

- a. increase by a factor of 3.
- b. increase by a factor of 9.
- c. increase by a factor of the square root of 3.
- d. decrease by a factor of 3.
- e. decrease by a factor of 9.
- f. decrease by a factor of the square root of 3.
- g. not be affected by the length change.

Question 42

Noah Formula is conducting an experimental study of the **period** of a pendulum. If Noah **increases the length of the string by a factor of three**, then he can expect the **period** of the pendulum to ...

- a. increase by a factor of 3.
- b. decrease by a factor of 3.
- c. increase by a factor of the square root of 3.
- d. decrease by a factor of the square root of 3.
- e. increase by a factor of 9.
- f. decrease by a factor of 9.
- q. not be affected by the length change.

Question 43

Noah Formula is conducting an experimental study of the **period** of a pendulum. If Noah **decreases the length of the string by a factor of three**, then he can expect the **period** of the pendulum to ...

- a. increase by a factor of 3.
- b. increase by a factor of 9.
- c. increase by a factor of the square root of 3.
- d. decrease by a factor of 3.
- e. decrease by a factor of 9.
- f. decrease by a factor of the square root of 3.
- g. not be affected by the length change.

Question 44

Noah Formula is conducting an experimental study of the **period** of a pendulum. If Noah **decreases the length of the string by a factor of three**, then he can expect the **period** of the pendulum to ...

a. increase by a factor of 3.

- b. decrease by a factor of 3.
- c. increase by a factor of the square root of 3.
- d. decrease by a factor of the square root of 3.
- e. increase by a factor of 9.
- f. decrease by a factor of 9.
- g. not be affected by the length change.

Question Group 12

Question 45

Noah Formula is conducting an experimental study of the **frequency** of a pendulum. If Noah **increases the length of the string by a factor of two**, then he can expect the **frequency** of the pendulum to ...

- a. increase by a factor of 2.
- b. increase by a factor of 4.
- c. increase by a factor of the square root of 2.
- d. decrease by a factor of 2.
- e. decrease by a factor of 4.
- f. decrease by a factor of the square root of 2.
- g. not be affected by the length change.

Question 46

Noah Formula is conducting an experimental study of the **frequency** of a pendulum. If Noah **increases the length of the string by a factor of two**, then he can expect the **frequency** of the pendulum to ...

- a. increase by a factor of 2.
- b. decrease by a factor of 2.
- c. increase by a factor of the square root of 2.
- d. decrease by a factor of the square root of 2.
- e. increase by a factor of 4.
- f. decrease by a factor of 4.
- g. not be affected by the length change.

Question 47

Noah Formula is conducting an experimental study of the **frequency** of a pendulum. If Noah **decreases the length of the string by a factor of two**, then he can expect the **frequency** of the pendulum to ...

- a. increase by a factor of 2.
- b. increase by a factor of 4.
- c. increase by a factor of the square root of 2.
- d. decrease by a factor of 2.

- e. decrease by a factor of 4.
- f. decrease by a factor of the square root of 2.
- g. not be affected by the length change.

Noah Formula is conducting an experimental study of the **frequency** of a pendulum. If Noah **decreases the length of the string by a factor of two**, then he can expect the **frequency** of the pendulum to ...

- a. increase by a factor of 2.
- b. decrease by a factor of 2.
- c. increase by a factor of the square root of 2.
- d. decrease by a factor of the square root of 2.
- e. increase by a factor of 4.
- f. decrease by a factor of 4.
- g. not be affected by the length change.

Question Group 13

Question 49

Noah Formula is conducting an experimental study of the **frequency** of a pendulum. If Noah **increases the length of the string by a factor of three**, then he can expect the **frequency** of the pendulum to ...

- a. increase by a factor of 3.
- b. increase by a factor of 9.
- c. increase by a factor of the square root of 3.
- d. decrease by a factor of 3.
- e. decrease by a factor of 9.
- f. decrease by a factor of the square root of 3.
- g. not be affected by the length change.

Question 50

Noah Formula is conducting an experimental study of the **frequency** of a pendulum. If Noah **increases the length of the string by a factor of three**, then he can expect the **frequency** of the pendulum to ...

- a. increase by a factor of 3.
- b. decrease by a factor of 3.
- c. increase by a factor of the square root of 3.
- d. decrease by a factor of the square root of 3.
- e. increase by a factor of 9.
- f. decrease by a factor of 9.
- g. not be affected by the length change.

Noah Formula is conducting an experimental study of the **frequency** of a pendulum. If Noah **decreases the length of the string by a factor of three**, then he can expect the **frequency** of the pendulum to ...

- a. increase by a factor of 3.
- b. increase by a factor of 9.
- c. increase by a factor of the square root of 3.
- d. decrease by a factor of 3.
- e. decrease by a factor of 9.
- f. decrease by a factor of the square root of 3.
- g. not be affected by the length change.

Question 52

Noah Formula is conducting an experimental study of the **frequency** of a pendulum. If Noah **decreases the length of the string by a factor of three**, then he can expect the **frequency** of the pendulum to ...

- a. increase by a factor of 3.
- b. decrease by a factor of 3.
- c. increase by a factor of the square root of 3.
- d. decrease by a factor of the square root of 3.
- e. increase by a factor of 9.
- f. decrease by a factor of 9.
- g. not be affected by the length change.

Question Group 14

Question 53

Noah Formula is conducting an experimental study of the **period** of a pendulum. If Noah **increases the mass of the string by a factor of two**, then he can expect the **period** of the pendulum to ...

- a. increase by a factor of 2.
- b. increase by a factor of 4.
- c. increase by a factor of the square root of 2.
- d. decrease by a factor of 2.
- e. decrease by a factor of 4.
- f. decrease by a factor of the square root of 2.
- g. not be affected by the mass change.

Noah Formula is conducting an experimental study of the **period** of a pendulum. If Noah **increases the mass of the string by a factor of two**, then he can expect the **period** of the pendulum to ...

- a. increase by a factor of 2.
- b. decrease by a factor of 2.
- c. increase by a factor of the square root of 2.
- d. decrease by a factor of the square root of 2.
- e. increase by a factor of 4.
- f. decrease by a factor of 4.
- g. not be affected by the mass change.

Question 55

Noah Formula is conducting an experimental study of the **period** of a pendulum. If Noah **decreases the mass of the string by a factor of two**, then he can expect the **period** of the pendulum to ...

- a. increase by a factor of 2.
- b. increase by a factor of 4.
- c. increase by a factor of the square root of 2.
- d. decrease by a factor of 2.
- e. decrease by a factor of 4.
- f. decrease by a factor of the square root of 2.
- g. not be affected by the mass change.

Question 56

Noah Formula is conducting an experimental study of the **period** of a pendulum. If Noah **decreases the mass of the string by a factor of two**, then he can expect the **period** of the pendulum to ...

- a. increase by a factor of 2.
- b. decrease by a factor of 2.
- c. increase by a factor of the square root of 2.
- d. decrease by a factor of the square root of 2.
- e. increase by a factor of 4.
- f. decrease by a factor of 4.
- g. not be affected by the mass change.

Question Group 15
Question 57

Noah Formula is conducting an experimental study of the **period** of a pendulum. If Noah **increases the mass of the string by a factor of three**, then he can expect the **period** of the pendulum to ...

- a. increase by a factor of 3.
- b. increase by a factor of 9.
- c. increase by a factor of the square root of 3.
- d. decrease by a factor of 3.
- e. decrease by a factor of 9.
- f. decrease by a factor of the square root of 3.
- g. not be affected by the mass change.

Question 58

Noah Formula is conducting an experimental study of the **period** of a pendulum. If Noah **increases the mass of the string by a factor of three**, then he can expect the **period** of the pendulum to ...

- a. increase by a factor of 3.
- b. decrease by a factor of 3.
- c. increase by a factor of the square root of 3.
- d. decrease by a factor of the square root of 3.
- e. increase by a factor of 9.
- f. decrease by a factor of 9.
- q. not be affected by the mass change.

Question 59

Noah Formula is conducting an experimental study of the **period** of a pendulum. If Noah **decreases the mass of the string by a factor of three**, then he can expect the **period** of the pendulum to ...

- a. increase by a factor of 3.
- b. increase by a factor of 9.
- c. increase by a factor of the square root of 3.
- d. decrease by a factor of 3.
- e. decrease by a factor of 9.
- f. decrease by a factor of the square root of 3.
- g. not be affected by the mass change.

Question 60

Noah Formula is conducting an experimental study of the **period** of a pendulum. If Noah **decreases the mass of the string by a factor of three**, then he can expect the **period** of the pendulum to ...

- a. increase by a factor of 3.
- b. decrease by a factor of 3.

- c. increase by a factor of the square root of 3.d. decrease by a factor of the square root of 3.
- e. increase by a factor of 9.
- f. decrease by a factor of 9.
- g. not be affected by the mass change.