Horizontal Springs: v and F

Activity 1: Speed Analysis Question Group 1 Question 1

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. At what position(s) is its speed the greatest?

- a. Position A and E
- b. Positions B and D
- c. Position C
- d. Position A only
- e. Position E only

Question 2

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. At what position(s) is its speed the greatest?

- a. Position A only
- b. Position E only
- c. Position A and E
- d. Positions B and D
- e. Position C

Question 3

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. At what position(s) is its speed the greatest?

- a. Position A only
- b. Position C
- c. Position E only
- d. Position A and E
- e. Positions B and D

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. At what position(s) is its speed the greatest?

- a. Position A only
- b. Position A and E
- c. Positions B and D
- d. Position C
- e. Position E only

Question Group 2 Question 5

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. At what position(s) does it have a speed of 0 m/s?

- a. Position A and E
- b. Positions B and D
- c. Position C
- d. Position A only
- e. Position E only

Question 6

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. At what position(s) does it have a speed of 0 m/s?

- a. Position A only
- b. Position E only
- c. Position A and E
- d. Positions B and D
- e. Position C

Question 7

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. At what position(s) does it have a speed of 0 m/s?

- a. Position A only
- b. Position C
- c. Position E only
- d. Position A and E
- e. Positions B and D

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. At what position(s) does it have a speed of 0 m/s?

- a. Position A only
- b. Position A and E
- c. Positions B and D
- d. Position C
- e. Position E only

Question Group 3 Question 9

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. In what manner does the speed change as the glider moves from A to C?

- a. Speed increases.
- b. Speed decreases.
- c. Speed remains unchanged.
- d. Speed first increases and then decreases.
- e. Speed first decreases and then increases.

Question 10

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. In what manner does the speed change as the glider moves from A to C?

- a. Speed remains unchanged.
- b. Speed increases.
- c. Speed first increases and then decreases.
- d. Speed decreases.

e. Speed first decreases and then increases.

Question 11

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. In what manner does the speed change as the glider moves from E to C?

- a. Speed increases.
- b. Speed decreases.
- c. Speed remains unchanged.
- d. Speed first increases and then decreases.
- e. Speed first decreases and then increases.

Question 12

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. In what manner does the speed change as the glider moves from E to C?

- a. Speed remains unchanged.
- b. Speed increases.
- c. Speed first increases and then decreases.
- d. Speed decreases.
- e. Speed first decreases and then increases.

Question Group 4 Question 13

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. In what manner does the speed change as the glider moves from C to A?

- a. Speed increases.
- b. Speed decreases.
- c. Speed remains unchanged.
- d. Speed first increases and then decreases.
- e. Speed first decreases and then increases.

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. In what manner does the speed change as the glider moves from C to A?

- a. Speed remains unchanged.
- b. Speed increases.
- c. Speed first increases and then decreases.
- d. Speed decreases.
- e. Speed first decreases and then increases.

Question 15

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. In what manner does the speed change as the glider moves from C to E?

- a. Speed increases.
- b. Speed decreases.
- c. Speed remains unchanged.
- d. Speed first increases and then decreases.
- e. Speed first decreases and then increases.

Question 16

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. In what manner does the speed change as the glider moves from C to E?

- a. Speed remains unchanged.
- b. Speed increases.
- c. Speed first increases and then decreases.
- d. Speed decreases.
- e. Speed first decreases and then increases.

Activity 2: Force Analysis Question Group 5 Question 17

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. At what position(s) is the net force the greatest?

- a. Position A and E
- b. Positions B and D
- c. Position C
- d. Position A only
- e. Position E only

Question 18

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. At what position(s) is the net force the greatest?

- a. Position A only
- b. Position E only
- c. Position A and E
- d. Positions B and D
- e. Position C

Question 19

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. At what position(s) is the net force the greatest?

- a. Position A only
- b. Position C
- c. Position E only
- d. Position A and E
- e. Positions B and D

Question 20

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. At what position(s) is the net force the greatest?

- a. Position A only
- b. Position A and E

- c. Positions B and D
- d. Position C
- e. Position E only

Question Group 6 Question 21

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. At what position(s) does it experience a net force of 0 N?

- a. Position A and E
- b. Positions B and D
- c. Position C
- d. Position A only
- e. Position E only

Question 22

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. At what position(s) does it experience a net force of 0 N?

- a. Position A only
- b. Position E only
- c. Position A and E
- d. Positions B and D
- e. Position C

Question 23

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. At what position(s) does it experience a net force of 0 N?

- a. Position A only
- b. Position C
- c. Position E only
- d. Position A and E
- e. Positions B and D

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. At what position(s) does it experience a net force of 0 N?

- a. Position A only
- b. Position A and E
- c. Positions B and D
- d. Position C
- e. Position E only

Question Group 7 Question 25

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. In what manner does the net force change as the glider moves from A to C?

- a. Net force increases.
- b. Net force decreases.
- c. Net force remains unchanged.
- d. Net force first increases and then decreases.
- e. Net force first decreases and then increases.

Question 26

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. In what manner does the net force change as the glider moves from A to C?

- a. Net force remains unchanged.
- b. Net force increases.
- c. Net force first increases and then decreases.
- d. Net force decreases.
- e. Net force first decreases and then increases.

Question 27

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. In what manner does the net force change as the glider moves from E to C?

- a. Net force increases.
- b. Net force decreases.
- c. Net force remains unchanged.
- d. Net force first increases and then decreases.
- e. Net force first decreases and then increases.

Question 28

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. In what manner does the net force change as the glider moves from E to C?

- a. Net force remains unchanged.
- b. Net force increases.
- c. Net force first increases and then decreases.
- d. Net force decreases.
- e. Net force first decreases and then increases.

Question Group 8 Question 29

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. In what manner does the net force change as the glider moves from C to A?

- a. Net force increases.
- b. Net force decreases.
- c. Net force remains unchanged.
- d. Net force first increases and then decreases.
- e. Net force first decreases and then increases.

Question 30

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. In what manner does the net force change as the glider moves from C to A?

- a. Net force remains unchanged.
- b. Net force increases.
- c. Net force first increases and then decreases.
- d. Net force decreases.
- e. Net force first decreases and then increases.

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. In what manner does the net force change as the glider moves from C to E?

- a. Net force increases.
- b. Net force decreases.
- c. Net force remains unchanged.
- d. Net force first increases and then decreases.
- e. Net force first decreases and then increases.

Question 32

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. In what manner does the net force change as the glider moves from C to E?

- a. Net force remains unchanged.
- b. Net force increases.
- c. Net force first increases and then decreases.
- d. Net force decreases.
- e. Net force first decreases and then increases.

Activity 3: Graphical Analysis Question Group 9 Question 33

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	C to B to A	C to D to E
E to D to C	B to C to D	D to C to B

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	B to C to D	C to D to E
E to D to C	D to C to B	C to B to A

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	C to B to A	C to D to E
E to D to C	B to C to D	D to C to B

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward

D

200000000000000000000000000

\$000000000000000000

A to B to C	B to C to D	C to D to E
E to D to C	D to C to B	C to B to A

Question Group 10 Question 37

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	C to B to A	C to D to E
E to D to C	B to C to D	D to C to B

V

+

0

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

t

A to B to C	B to C to D	C to D to E
E to D to C	D to C to B	C to B to A

V +

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	C to B to A	C to D to E
E to D to C	B to C to D	D to C to B

v +

0

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

t

A to B to C	B to C to D	C to D to E
E to D to C	D to C to B	C to B to A

Question Group 11 Question 41

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	C to B to A	C to D to E
E to D to C	B to C to D	D to C to B

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	B to C to D	C to D to E
E to D to C	D to C to B	C to B to A

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	C to B to A	C to D to E
E to D to C	B to C to D	D to C to B

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	B to C to D	C to D to E
E to D to C	D to C to B	C to B to A

Question Group 12 Question 45

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	C to B to A	C to D to E
E to D to C	B to C to D	D to C to B

v +

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	B to C to D	C to D to E
E to D to C	D to C to B	C to B to A

v +

0

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

R

С

D

A to B to C	C to B to A	C to D to E
E to D to C	B to C to D	D to C to B

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	B to C to D	C to D to E
E to D to C	D to C to B	C to B to A

Question Group 13 Question 49

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	C to B to A	C to D to E	
E to D to C	B to C to D	D to C to B	

v +

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	B to C to D	C to D to E
E to D to C	D to C to B	C to B to A

V

+

0

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	C to B to A	C to D to E
E to D to C	B to C to D	D to C to B

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	B to C to D	C to D to E
E to D to C	D to C to B	C to B to A

Question Group 14 Question 53

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	C to B to A	C to D to E
E to D to C	B to C to D	D to C to B

V +

0

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

t

A to B to C	B to C to D	C to D to E
E to D to C	D to C to B	C to B to A

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	C to B to A	C to D to E
E to D to C	B to C to D	D to C to B

An air track glider is attached to a spring. It is pulled back to position A and released from rest. It vibrates back and forth between positions A and E. Position C is the equilibrium position. A portion of a plot of its velocity as a function of time is shown. A positive velocity represents the glider moving to the right; a negative velocity represents a leftward motion.

A to B to C	B to C to D	C to D to E
E to D to C	D to C to B	C to B to A