Thermal Stoichiometry

Apprentice Difficulty Level

Question 1 Consider the thermochemical equation for methane combustion: $CH_4 + 2O_2 = CO_2 + 2H_2O + 890 \text{ kJ}$ The reaction of ... a. ... 1.0 mole of CH₄ will release ______ kJ of energy. ... 4.0 mole of CH₄ will release _____ kJ of energy.

- b.
- ... mole of CH₄ will release 445 kJ of energy. C.
- ... 32 grams of CH₄ will release _____ kJ of energy. d.
- e. ... 27 mole of CH₄ will release ______ kJ of energy.

Question 2

Consider the thermochemical equation for methane combustion: $CH_4 + 2O_2 = CO_2 + 2H_2O + 890 kJ$ The reaction of ...

- ... 1.0 mole of CH₄ will release _____ kJ of energy. a.
- ... 3.0 mole of CH₄ will release _____ kJ of energy. b.
- C. ... mole of CH₄ will release 1780 kJ of energy.
- ... 8.0 grams of CH₄ will release _____ kJ of energy. d.
- ... 21 mole of CH₄ will release ______ kJ of energy. e.

Question 3

Consider the thermochemical equation for methane combustion: $CH_4 + 2O_2 = CO_2 + 2H_2O + 890 \text{ kJ}$ The reaction of ...

- ... 2.0 mole of CH₄ will release _____ kJ of energy. a.
- ... 3.0 mole of CH₄ will release _____ kJ of energy. b.
- ... _____ mole of CH₄ will release 890 kJ of energy. C.
- d. ... 48 grams of CH₄ will release _____ kJ of energy.
- ... 19 mole of CH₄ will release _____ kJ of energy. e.

Question 4

Consider the thermochemical equation for methane combustion: $CH_4 + 2 O_2 = > CO_2 + 2 H_2O + 890 \text{ kJ}$ The reaction of ...

- a. ... 1.0 mole of CH_4 will release _____ kJ of energy.
- b. ... 2.5 mole of CH_4 will release _____ kJ of energy.
- c. ... _____ mole of CH₄ will release 445 kJ of energy.
- d. ... 16 grams of CH₄ will release _____ kJ of energy.
- e. ... 35 mole of CH₄ will release _____ kJ of energy.

Master Difficulty Level

Question 5

Consider the thermochemical equation for propane combustion:

 $C_3H_8 + 5 O_2 = 3 CO_2 + 4 H_2O + 2200 kJ$

Fill in the table showing the mass-mole-energy relationships for this reaction.

	grams C₃H ₈	mol C ₃ H ₈ reacted	mol O ₂ reacted	Heat (kJ) Released
a.	44.0	1.00		
b.	22.0	0.500		
c.		2.00		
d.			4.50	
e.				11 000

Question 6

Consider the thermochemical equation for propane combustion:

 $C_{3}H_{8} + 5 O_{2} = 3 CO_{2} + 4 H_{2}O + 2200 kJ$

Fill in the table showing the mass-mole-energy relationships for this reaction.

	grams C₃H₅	mol C ₃ H ₈ reacted	mol O ₂ reacted	Heat (kJ) Released
a.	44.0	1.00		
b.	11.0	0.250		
c.		3.00		
d.			3.50	
e.				1100

Question 7

Consider the thermochemical equation for propane combustion:

 $C_3H_8 + 5 O_2 = 3 CO_2 + 4 H_2O + 2200 kJ$

	grams C₃H ₈	mol C ₃ H ₈ reacted	mol O ₂ reacted	Heat (kJ) Released
a.	44.0	1.00		
b.	88.0	2.00		
C.		6.00		
d.			1.50	
e.				6600

Question 8

Consider the thermochemical equation for propane combustion:

 $C_3H_8 + 5 O_2 = 3 CO_2 + 4 H_2O + 2200 kJ$

Fill in the table showing the mass-mole-energy relationships for this reaction.

	grams C₃H₀	mol C ₃ H ₈ reacted	mol O ₂ reacted	Heat (kJ) Released
a.	44.0	1.00		
b.	66.0	1.50		
c.		5.0		
d.			12.5	
e.				8800

Question 9

Consider the thermochemical equation for propane combustion:

 $C_3H_8 + 5 O_2 \implies 3 CO_2 + 4 H_2O + 2200 kJ$

	grams C₃H ₈	mol C ₃ H ₈ reacted	mol O ₂ reacted	Heat (kJ) Released
a.	44.0	1.00		
b.	<mark>66</mark> .0	1.50		
C.		5.0		
d.			12.5	
e.				550

Question 10

Consider the thermochemical equation for propane combustion:

 $C_3H_8 + 5 O_2 = 3 CO_2 + 4 H_2O + 2200 kJ$

	grams C₃H₀	mol C ₃ H ₈ reacted	mol O ₂ reacted	Heat (kJ) Released
a.	44.0	1.00		
b.	110.0	2.50		
C.		4.0		
d.			25.0	
e.				44 000

Wizard Difficulty Level Question 11

Consider the thermochemical equation for propane combustion:

 $2 C_4 H_{10} + 13 O_2 = 8 CO_2 + 10 H_2 O + 5750 kJ$

Fill in the table showing the mass-mole-energy relationships for this reaction.

	grams C ₄ H ₁₀	mol C ₄ H ₁₀ reacted	mol O ₂ reacted	Heat (kJ) Released
a.	11.6	0.200		
b.	174	3.00		
c.		2.50		
d.			6.92	
e.				14 500

Question 12

Consider the thermochemical equation for propane combustion:

 $2 C_4 H_{10} + 13 O_2 = 8 CO_2 + 10 H_2O + 5750 kJ$

Fill in the table showing the mass-mole-energy relationships for this reaction.

	grams C ₄ H ₁₀	mol C ₄ H ₁₀ reacted	mol O ₂ reacted	Heat (kJ) Released
a.	23.2	0.400		
b.	87.0	1.50		
C.		5.00		
d.			9.21	
e.				16 700

Question 13

Consider the thermochemical equation for propane combustion:

 $2 C_4 H_{10} + 13 O_2 = 8 CO_2 + 10 H_2O + 5750 kJ$

Fill in the table showing the mass-mole-energy relationships for this reaction.

	grams C ₄ H ₁₀	mol C ₄ H ₁₀ reacted	mol O ₂ reacted	Heat (kJ) Released
a.	29.0	0.500		
b.	145	2.50		
c.		6.00		
d.			14.2	
e.				8210

Question 14

Consider the thermochemical equation for propane combustion:

 $2 C_4 H_{10} + 13 O_2 \implies 8 CO_2 + 10 H_2O + 5750 kJ$

Fill in the table showing the mass-mole-energy relationships for this reaction.

	grams C ₄ H ₁₀	mol C ₄ H ₁₀ reacted	mol O ₂ reacted	Heat (kJ) Released
a.	34.8	0.60		
b.	174	3.00		
c.		8.00		
d.			17.4	
e.				9780

Question 15

Consider the thermochemical equation for propane combustion:

2 C₄H₁₀ + 13 O₂ ==> 8 CO₂ + 10 H₂O + 5750 kJ

	grams C ₄ H ₁₀	mol C ₄ H ₁₀ reacted	mol O ₂ reacted	Heat (kJ) Released
a.	43.5	0.750		
b.	203	3.50		
C.		11.0		
d.			19.1	
e.				6850

Question 16

Consider the thermochemical equation for propane combustion:

 $2 C_4 H_{10} + 13 O_2 = > 8 CO_2 + 10 H_2O + 5750 kJ$

	grams C ₄ H ₁₀	mol C ₄ H ₁₀ reacted	mol O ₂ reacted	Heat (kJ) Released
a.	174	3.0		
b.	34.8	0.600		
c.		12.0		
d.			21.8	
e.				16 900