States of Matter

Activity 1: Who Am I?

Question Group 1

Question 1

I have intermolecular forces that are stronger than any state; they do a fine job holding my particles in place.

I am not even aware of my intermolecular forces.

I have intermolecular forces; they are just not strong enough to hold my particles in place.

Question Group 2

Question 2

Some people call me rigid. So if you hit me, it's probably going to hurt you.

I have a mild degree of rigidity. So if you hit me, I'll offer some resistance; but mainly I'll make a splash.

I'm not even close to rigid. So if you try to hit me, my particles will just move out of the way.

Question Group 3

Question 3

I have particles that are very close together and arranged in a very orderly manner. I have particles that are close together but I make no effort to put them in any arrangement. I have particles that are spaced far apart and they move so much they have little time to arrange themselves.

Question Group 4

Question 4

I have a fixed shape and volume, regardless of the container that holds me.

I have a fixed volume but my shape depends on the container that holds me.

I have a variable shape and variable volume, both of which depend on the container that holds me.

Question Group 5

Question 5

I have particles that vibrate about their fixed position but the forces between them prevent them from moving.

I have particles that can both vibrate and move about the container, but don't expect them to win any races.

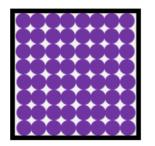
I have particles that are constantly on the go, moving about the entire container at high speeds.

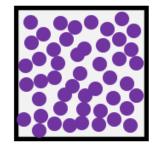
Question Group 6 Question 6

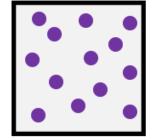
I'm not easily compressed. And forget about any hopes of me flowing.

I am not easily compressed when external forces are applied but I'm ready to flow if you tip my container.

I am quite easily compressed under the influence of an external force and flow is my middle name.

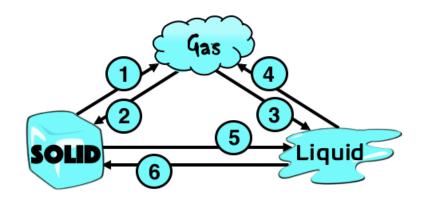

Question Group 7 Question 7


I had a caricature made of me resting in my container. It looks like this:



Question Group 8 Question 8

I have the following artist-drawn portrait of me hanging above my fireplace.

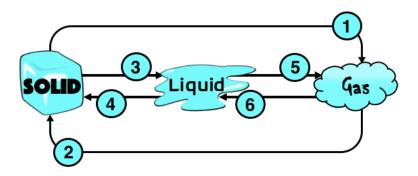


Activity 2: State Changes

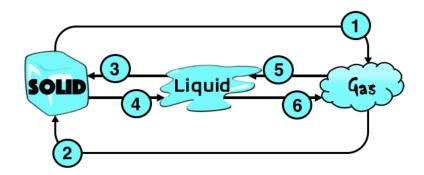
Question Group 9

Question 9

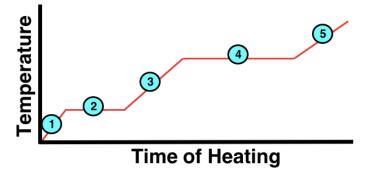
Identify the names of the state changes depicted in the diagram.


Question 10

Identify the names of the state changes depicted in the diagram.


Question 11

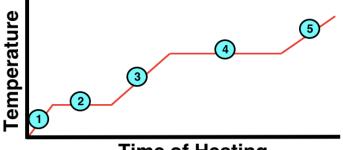
Identify the names of the state changes depicted in the diagram.


Question 12

Identify the names of the state changes depicted in the diagram.

Activity 3: Heating Curves Question Group 10 Question 13

A substance is placed in a closed vessel. The substance is continuously heated and its temperature monitored, leading to the *heating curve* below. Five regions of the heating curve are labeled with a number.

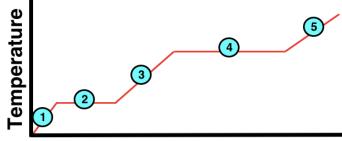


During which numbered region of the graph is there ...

- ... only solid present?
- ... only liquid present?
- ... only gas present?

Question Group 11 Question 14

A substance is placed in a closed vessel. The substance is continuously heated and its temperature monitored, leading to the *heating curve* below. Five regions of the heating curve are labeled with a number.

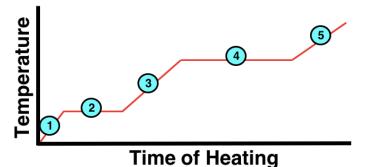


Time of Heating

During which numbered region of the graph is there ...

- ... a mixure of solid and liquid present?
- ... a mixure of liquid and gas present?
- ... a mixure of solid and gas present?

Question Group 12 Question 15


Time of Heating

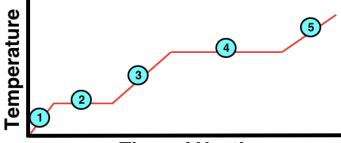
During which numbered region(s) of the graph does ...

- ... melting take place?
- ... boiling take place?
- ... sublimation take place?

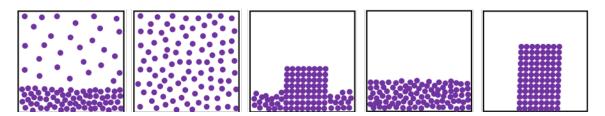

Question Group 13 Question 16

A substance is placed in a closed vessel. The substance is continuously heated and its temperature monitored, leading to the *heating curve* below. Five regions of the heating curve are labeled with a number.

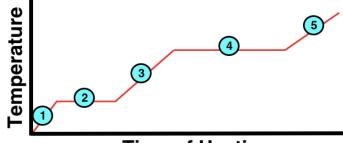
During which numbered region(s) of the graph does the addition of heat lead to a temperature change? Select all that apply.


Question Group 14 Question 17

During which numbered region(s) of the graph does the addition of heat lead to a state change? Select all that apply.

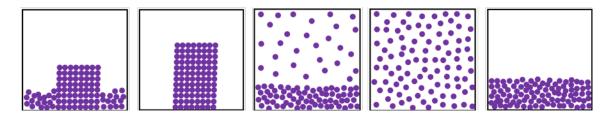

Question Group 15 Question 18

A substance is placed in a closed vessel. The substance is continuously heated and its temperature monitored, leading to the *heating curve* below. Five regions of the heating curve are labeled with a number.

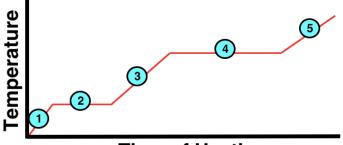


Time of Heating

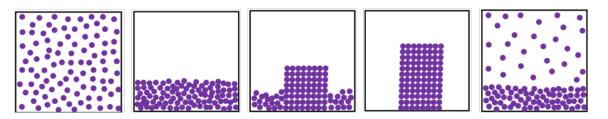
Match the particle representations shown below to a numbered region of the graph.



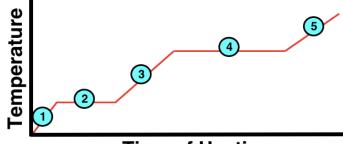
Question 19


Time of Heating

Match the particle representations shown below to a numbered region of the graph.

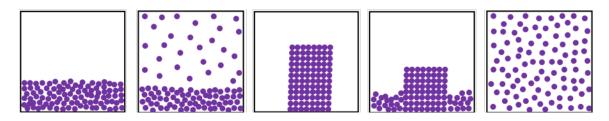

Question 20

A substance is placed in a closed vessel. The substance is continuously heated and its temperature monitored, leading to the *heating curve* below. Five regions of the heating curve are labeled with a number.

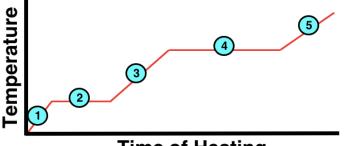


Time of Heating

Match the particle representations shown below to a numbered region of the graph.

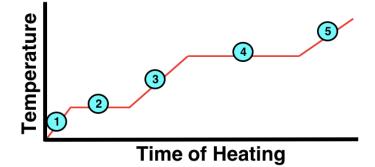


Question 21


Time of Heating

Match the particle representations shown below to a numbered region of the graph.

Question Group 16 Question 22


A substance is placed in a closed vessel. The substance is continuously heated and its temperature monitored, leading to the *heating curve* below. Five regions of the heating curve are labeled with a number.

Time of Heating

During which region of the graph does the addition of heat cause particles to vibrate more vigorously while remaining in an otherwise locked position?

Question Group 17 Question 23

During which region of the graph does the addition of heat cause particles to move about the entire container at even higher speeds?