Line Spectrs

Activity 1 – Pargraph Completion Question Group 1 Question 1

There is only one question in this Activity - a paragraph completion question with seven blanks to fill in. The paragraph is ...

Electrons in atoms have	_ energy
levels. An electron's energy level can change when	
When an atom	า
energy, the electron will jump to a	higher
energy level. This higher energy level is known as	
Electrons won't maintain	ı this
high energy forever, but will transition to lower energy	/ levels.
These transitions result in	
as the electron changes from the high energy state to	the
lower energy state. The difference in energy between	the two
energy states is equal to the	
When viewed through a spectroscope, electron transi	itions are
seen as	

Options for blanks include:

- 1. a continuous range of , only certain quantized
- 2. heat or electricity is applied, the object is touched or rubbed, a proton or neutron is added
- 3. releases, absorbs
- 4. a resting state, a ground state, an excited state, a united state
- 5. a phase change, a chemical reaction, the release of a photon
- 6. energy of the photon, enthalpy change of the reaction, heat of vaporization or fusion
- 7. a continuous rainbow of color, lines of a specific color, a magnificent fireworks display

Activity 2: Match That Color Question Group 2

Question 2

Consider three colored lines on a line spectra - red, orange, and violet. Wavelengths associated with the lines are shown below. Match the wavelengths to the color of the lines.

Wavelength 610 nm

Wavelength 420 nm

Wavelength 685 nm

Question 3

Consider three colored lines on a line spectra - blue, green, and violet. Wavelengths associated with the lines are shown below. Match the wavelengths to the color of the lines.

Wavelength 425 nm

Wavelength 550 nm

Wavelength 468 nm

Question 4

Consider three colored lines on a line spectra - red, yellow, and green. Wavelengths associated with the lines are shown below. Match the wavelengths to the color of the lines.

Wavelength 675 nm

Wavelength 535 nm

Wavelength 585 nm

Question Group 3 Question 5

Consider three colored lines on a line spectra - violet, red, and green. Frequencies associated with the lines are shown below. Match the frequencies to the color of the lines.

Frequency (Hz) 5.8 x 10¹⁴

Frequency (Hz) 7.2 x 10¹⁴

Frequency (Hz) 4.5 x 10¹⁴

Question 6

Consider three colored lines on a line spectra - blue, green, and vioilet. Frequencies associated with the lines are shown below. Match the frequencies to the color of the lines.

Frequency (Hz) 7.1×10^{14}

Frequency (Hz) 6.6 x 10¹⁴

Frequency (Hz) 5.6 x 10¹⁴

Question 7

Consider three colored lines on a line spectra - red, orange, and green. Frequencies associated with the lines are shown below. Match the frequencies to the color of the lines.

Frequency (Hz) 4.3 x 10¹⁴ Frequency (Hz) 5.7 x 10¹⁴ Frequency (Hz) 4.9 x 10¹⁴

Question Group 4 Question 8

Consider three colored lines on a line spectra - blue, green, and red. Photon energy values associated with the lines are shown below. Match the energy values to the color of the lines.

Energy (J) 2.9 x 10⁻¹⁹

Energy (J) 4.2 x 10⁻¹⁹

Energy (J) 3.7 x 10⁻¹⁹

Question 9

Consider three colored lines on a line spectra - violet, yellow, and orange. Photon energy values associated with the lines are shown below. Match the energy values to the color of the lines.

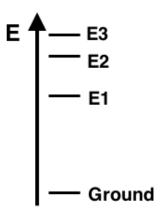
Energy (J) 3.4 x 10⁻¹⁹

Energy (J) 3.3 x 10⁻¹⁹

Energy (J) 4.8 x 10⁻¹⁹

Question 10

Consider three colored lines on a line spectra - red, orange, and yellow. Photon energy values associated with the lines are shown below. Match the energy values to the color of the lines.

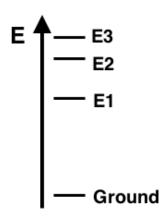

Energy (J) 3.3 x 10⁻¹⁹

Energy (J) 3.4 x 10⁻¹⁹

Energy (J) 2.9 x 10⁻¹⁹

Activity 3: Match That Color Question Group 5 Question 11

The energy level diagram for Element X shows the ground state and excited states **E1**, **E2**, and **E3**. The line spectra for this element displays three visible emission lines - violet, green, and red. The lines correspond to the electron transitions indicated below. Based on the properly-scaled energy levels shown in the diagram, match the three colors to the corresponding transitions.

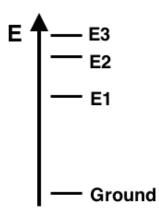


- e- Transition from E3 to E1: _____
- e- Transition from E2 to E1: _____
- e- Transition from E1 to Ground: _____

Finally, the transition from E3 to Ground state would not be visible since it would correspond to the emission of ...

Question 12

The energy level diagram for Element X shows the ground state and excited states **E1**, **E2**, and **E3**. The line spectra for this element displays three visible emission lines - violet, green, and red. The lines correspond to the electron transitions indicated below. Based on the properly-scaled energy levels shown in the diagram, match the three colors to the corresponding transitions.

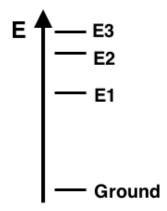


- e- Transition from E3 to E3: _____
- e- Transition from E3 to E1: _____
- e- Transition from E2 to E1:

Finally, the transition from E1 to Ground state would not be visible since it would correspond to the emission of ...

Question 13

The energy level diagram for Element X shows the ground state and excited states **E1**, **E2**, and **E3**. The line spectra for this element displays three visible emission lines - violet, green, and orange. The lines correspond to the electron transitions indicated below. Based on the properly-scaled energy levels shown in the diagram, match the three colors to the corresponding transitions.

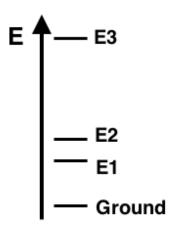


- e- Transition from E3 to E1: _____
- e- Transition from E2 to E1:
- e- Transition from E1 to Ground:

Finally, the transition from E3 to E2 would not be visible since it would correspond to the emission of ...

Question 14

The energy level diagram for Element X shows the ground state and excited states **E1**, **E2**, and **E3**. The line spectra for this element displays three visible emission lines - blue, yellow, and red. The lines correspond to the electron transitions indicated below. Based on the properly-scaled energy levels shown in the diagram, match the three colors to the corresponding transitions.



- e⁻ Transition from E3 to E1:
- e- Transition from E2 to E1:
- e- Transition from E1 to Ground:

Finally, the transition from E3 to E2 would not be visible since it would correspond to the emission of ...

Question Group 6 Question 15

The energy level diagram for Element X shows the ground state and excited states **E1**, **E2**, and **E3**. The line spectra for this element displays three visible emission lines - violet, green, and red. The lines correspond to the electron transitions indicated below. Based on the properly-scaled energy levels shown in the diagram, match the three colors to the corresponding transitions.

e- Transition from E3 to E2: _____

e- Transition from E2 to Ground: _____

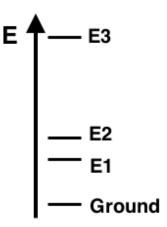
e- Transition from E1 to Ground: _____

Finally, the transition from E3 to Ground state would not be visible since it would correspond to the emission of ...

Question 16

The energy level diagram for Element X shows the ground state and excited states **E1**, **E2**, and **E3**. The line spectra for this element displays three visible emission lines - violet, blue, and orange. The lines correspond to the electron transitions indicated below. Based on the properly-scaled energy levels shown in the diagram, match the three colors to the corresponding transitions.

e- Transition from E3 to E2: ____

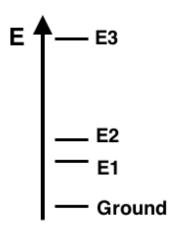

e- Transition from E2 to Ground: _____

e- Transition from E1 to Ground:

Finally, the transition from E2 to E1 would not be visible since it would correspond to the emission of ...

Question 17

The energy level diagram for Element X shows the ground state and excited states **E1**, **E2**, and **E3**. The line spectra for this element displays three visible emission lines - violet, green, and red. The lines correspond to the electron transitions indicated below. Based on the properly-scaled energy levels shown in the diagram, match the three colors to the corresponding transitions.

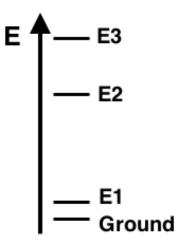


- e- Transition from E3 to E2: _____
- e- Transition from E2 to E1:
- e- Transition from E2 to Ground: _____

Finally, the transition from E3 to Ground state would not be visible since it would correspond to the emission of ...

Question 18

The energy level diagram for Element X shows the ground state and excited states **E1**, **E2**, and **E3**. The line spectra for this element displays three visible emission lines - blue, yellow, and red. The lines correspond to the electron transitions indicated below. Based on the properly-scaled energy levels shown in the diagram, match the three colors to the corresponding transitions.



- e⁻ Transition from E3 to E2: _____
- e- Transition from E2 to E1: _____
- e⁻ Transition from E2 to Ground:

Finally, the transition from E2 to E1 would not be visible since it would correspond to the emission of ...

Question Group 7 Question 19

The energy level diagram for Element X shows the ground state and excited states **E1**, **E2**, and **E3**. The line spectra for this element displays three visible emission lines - violet, green, and red. The lines correspond to the electron transitions indicated below. Based on the properly-scaled energy levels shown in the diagram, match the three colors to the corresponding transitions.

- e⁻ Transition from E3 to E2: _____
- e- Transition from E2 to E1: ____
- e- Transition from E2 to Ground:

Finally, the transition from E3 to Ground state would not be visible since it would correspond to the emission of ...

Question 20

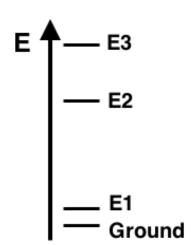
The energy level diagram for Element X shows the ground state and excited states **E1**, **E2**, and **E3**. The line spectra for this element displays three visible emission lines - violet, blue, and orange. The lines correspond to the electron transitions indicated below. Based on the properly-scaled energy levels shown in the diagram, match the three colors to the corresponding transitions.

- e- Transition from E3 to E2:
- e- Transition from E2 to E1: _____
- e- Transition from E2 to Ground: _____

Finally, the transition from E1 to Ground state would not be visible since it would correspond to the emission of ...

Question 21

The energy level diagram for Element X shows the ground state and excited states **E1**, **E2**, and **E3**. The line spectra for this element displays three visible emission lines - violet, green, and red. The lines correspond to the electron transitions indicated below. Based on the properly-scaled energy levels shown in the diagram, match the three colors to the corresponding transitions.



- e- Transition from E3 to E2:
- e- Transition from E2 to E1:
- e- Transition from E1 to Ground: _____

Finally, the transition from E3 to Ground state would not be visible since it would correspond to the emission of ...

Question 22

The energy level diagram for Element X shows the ground state and excited states **E1**, **E2**, and **E3**. The line spectra for this element displays three visible emission lines - violet, blue, and red. The lines correspond to the electron transitions indicated below. Based on the properly-scaled energy levels shown in the diagram, match the three colors to the corresponding transitions.

- e⁻ Transition from E3 to E2: _____
- e- Transition from E2 to E1:
- e⁻ Transition from E1 to Ground:

Finally, the transition from E2 to Ground state would not be visible since it would correspond to the emission of ...