Intermolecular Forces

Activity 1: Paragraph Completion Question Group 1 Question 1

Fill in the blanks to complete the following paragraph about **dipole-dipole interactions**. Tap a blank to toggle through answer options.

Dipole-dipol	le intermolecular	forces are experienced
by	molecules. Si	uch molecules possess
		, known as a dipole .
Molecules in	n such substance	e will align themselves
such that _		This
alignment re	esults in an interr	molecular force that is
stronger tha	เท	Dipole-dipole
forces would	d be observed in	a substance such as
b	ecause it consist	ts of
To determin	ne if a substance	experiences dipole-
dipole intera	actions, first dete	rmine if it posseses
	; then cons	sider molecular shape
to insure tha	at	

Question Group 2 Question 2

Fill in the blanks to complete the following paragraph about **London dispersion forces**. Tap a blank to toggle through answer options.

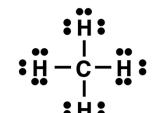
London disperson forces a	re the	of all
intermolecular forces (IMF	s). All subs	tances experience such
IMFs, but it is the only IMF	that a	substance
experiences. Electrons in p	oarticles ar	e in constant motion.
London dispersion forces of	occur beca	use at any given time,
the electrons could		, resulting
in		This in turn would
		and result in
		Dispersion
forces are		
the most dominant IMF in a	a substanc	e such as
because it is	London	dispersion forces are
strongest in molecules that	t are	because their
electron clouds		

Question Group 3 Question 3

Fill in the blanks to complete the following paragraph about **hydrogen bonding**. Tap a blank to toggle through answer options.

Hydrogen bonding is an intermolecular for	orce (IMF)
observed in substances with	
Hydrogen bonding is	London
dispersion forces and	dipole-
dipole interactions. Hydrogen bonding is	observed in
It is the result	of the H atom
	This occurs
because	
To determine if a substance experiences	hydrogen
bonding,	

Activity 2: Force Identification Question Group 4


Question 4

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions Hydrogen bonding

Lewis Structure of CH₄

A formula and Lewis Structure for a substance is whether the molecule is a polar molecule. And that the substance would experience.

Polar Bonds? No Yes Polar Molecule? Nο Yes

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions Hydrogen bonding

Question 5

shown. Identify whether it has polar bonds. Identify identify all the types of intermolecular forces (IMFs)

Question 6

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions Hydrogen bonding

Lewis Structure of BH₃

Lewis Structure of CS₂

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Lewis Structure of CSe₂

Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions Hydrogen bonding

Question Group 5 was removed on 12/5/2024. The questions are found at the bottom of this document.

Question Group 6 Question 12

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

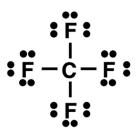
Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions Hydrogen bonding

Lewis Structure of CO₂

Question 13


A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions Hydrogen bonding

Lewis Structure of CF₄

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions Hydrogen bonding

Lewis Structure of BCI₃

Question 15

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And that the substance would experience.

Polar Bonds? Yes No Polar Molecule?

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions Hydrogen bonding

identify all the types of intermolecular forces (IMFs)

Yes No

Question Group 7 Question 16

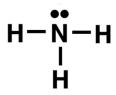
A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

Lewis Structure of SO₃

Lewis Structure of HOCI


A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions

Lewis Structure of NH₃

Hydrogen bonding

Question 18

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions

Lewis Structure of CH₃OH

Hydrogen bonding

Question 19

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

Lewis Structure of HF

Question Group 8 Question 20

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Lewis Structure of OCI₂

Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions Hydrogen bonding

Question 21

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Lewis Structure of SO₂

Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions Hydrogen bonding

Question 22

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions Hydrogen bonding

Lewis Structure of PCI₃

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Polar Bonds? Yes No Polar Molecule? Yes No

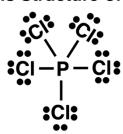
Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions

Lewis Structure of NF₃

Hydrogen bonding

Question Group 9 Question 24


A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Polar Bonds? Yes No Polar Molecule? Yes No

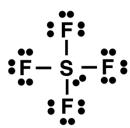
Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions

Lewis Structure of PCI₅

Question 25

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.


Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions Hyd

Lewis Structure of SF₄

Hydrogen bonding

Hydrogen bonding

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Polar Bonds? Yes No Polar Molecule? Yes No

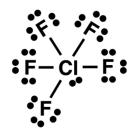
Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions Hydrogen bonding

F-CI-F:

Lewis Structure of CIF₃

Question 27


A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions

Lewis Structure of CIF₅

Hydrogen bonding

Activity 3: Ranking Tasks

Question Group 10

Question 28

For the following substances, consider the types of intermolecular forces and their relative strength. Then rank the substances in terms of the overall strength of the intermolecular forces.

NНз

РНз

AsH₃

Question 29

For the following substances, consider the types of intermolecular forces and their relative strength. Then rank the substances in terms of the overall strength of the intermolecular forces.

AsH₃

ΝНз

PH₃

Question 30

For the following substances, consider the types of intermolecular forces and their relative strength. Then rank the substances in terms of the overall strength of the intermolecular forces.

 PH_3

AsH₃

NНз

Question Group 11

Question 31

For the following substances, consider the types of intermolecular forces and their relative strength. Then rank the substances in terms of the overall strength of the intermolecular forces.

CH₄

C₄H₁₀

C₂₅H₅₂

Question 32

For the following substances, consider the types of intermolecular forces and their relative strength. Then rank the substances in terms of the overall strength of the intermolecular forces.

C₂₅H₅₂

CH₄

C₄H₁₀

Question 33

For the following substances, consider the types of intermolecular forces and their relative strength. Then rank the substances in terms of the overall strength of the intermolecular forces.

C₄H₁₀

C₂₅H₅₂

CH₄

Question Group 12

Question 34

For the following substances, consider the types of intermolecular forces and their relative strength. Then rank the substances in terms of the overall strength of the intermolecular forces.

F۶

Br₂

 I_2

Question 35

For the following substances, consider the types of intermolecular forces and their relative strength. Then rank the substances in terms of the overall strength of the intermolecular forces.

2

F۶

Br₂

Question 36

For the following substances, consider the types of intermolecular forces and their relative strength. Then rank the substances in terms of the overall strength of the intermolecular forces.

Br2

12

Question Group 13

Question 37

For the following substances, consider the types of intermolecular forces and their relative strength. Then rank the substances in terms of the overall strength of the intermolecular forces.

CH₄

NНз

 H_2O

Question 38

For the following substances, consider the types of intermolecular forces and their relative strength. Then rank the substances in terms of the overall strength of the intermolecular forces.

H₂O

CH₄

ΝНз

Question 39

For the following substances, consider the types of intermolecular forces and their relative strength. Then rank the substances in terms of the overall strength of the intermolecular forces.

 NH_3

H₂O

CH₄

Question Group 5 was removed from the Concept Builder on 12/5/2024

Question Group 5 Question 8

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Lewis Structure of PH₃

Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions Hydrogen bonding

Question 9

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Lewis Structure of H₂Se

Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions Hydrogen bonding

Question 10

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Lewis Structure of NCI₃

Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions Hydrogen bonding

A formula and Lewis Structure for a substance is shown. Identify whether it has polar bonds. Identify whether the molecule is a polar molecule. And identify all the types of intermolecular forces (IMFs) that the substance would experience.

Lewis Structure of NBr₃

Polar Bonds? Yes No Polar Molecule? Yes No

Types of Intermolecular Forces (circle all that apply):

London dispersion forces Dipole-dipole interactions Hydrogen bonding