Hess's Law Questions

Question Group 1 Question 1

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given:

A + 2C ==> D + E	ΔH = -200 kJ
3C ==> 2D	ΔH = +350 kJ
Target:	

3 A + D ==> 3 E ΔH = ???

Question 2

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given:

3 A + E ==> 2 B	ΔH = -150 kJ
2 A + E ==> B + D	ΔH = +200 kJ
Target: A + E ==> 2 D	ΔH = ???

Question 3

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

2B + E ==> C + D	ΔH = +250 kJ
B + 2E ==> 2C	ΔH = -100 kJ
Target: 2 D ==> 3 B	ΔH = ???

Question Group 2

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Question 4	
Given:	
E + C ==> 2 A	ΔH = -100 kJ
2 C ==> 3 A	ΔH = -350 kJ
Target:	
A ==> 2 E	ΔH = ???

Question 5

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given:

2 A + B ==> 3 E	ΔH = -350 kJ
B + D ==> 2 E	ΔH = +100 kJ

Target:

0	
4 A ==> 3 D + B	ΔH = ???

Question 6

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

2 B + D ==> 3 A + 2 C	ΔH = -100 kJ
D + B ==> C + E	ΔH = -350 kJ
Target: 3 A + D ==> 2 E	ΔH = ???

Question Group 3

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Question 7

Given:	
3 A + E ==> 2 B	ΔH = -200 kJ
2 A + E ==> B + D	ΔH = +300 kJ
Target:	
A + E ==> 2 D	$\Delta H = ???$

Question 8

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given:

2B + E ==> C + D	ΔH = -200 kJ
B + 2 E ==> 2 C	ΔH = +300 kJ
Target:	

i arget:

2 D ==> 3 B

Question 9

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

 $\Delta H = ???$

3 C ==> A + 2 D	ΔH = -200 kJ
A + C ==> B + D	ΔH = +350 kJ
Target: 3 A ==> C + 2 B	ΔH = ???

Master Difficulty Level Question Group 4 Question 10

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given: C + D ==> 2 E 2 A ==> 2 C + D A + E ==> D	ΔH = -150 kJ ΔH = -100 kJ ΔH = -200 kJ
Target: A + 4 C ==> E	ΔH = ???

Question 11

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given:

A + 2E ==> 3D + B	ΔH = -300 kJ
C + B ==> D + A	ΔH = -200 kJ
2B + D ==> A + 3D	ΔH = -150 kJ
Target: 2 B + 2 E ==> 3 C	ΔH = ???

Question 12

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

A + 2C ==> 3B + 2E	ΔH = -50 kJ
2D + B ==> 2A + C	ΔH = -150 kJ
D + 2B ==> A + C	ΔH = -300 kJ
Target: A + C ==> 2 E	ΔH = ???

Question Group 5 Question 13

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given:

2 A + E ==> B + 2 C 3 A + E ==> 2 B + D	ΔH = -250 kJ ΔH = -100 kJ
2 B + C ==> A + E Target:	ΔH = -150 kJ
2 B + D ==> 3 C	ΔH = ???

Question 14

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given:

B + C ==> 2D + E	ΔH = -200 kJ
C + D ==> 2A + B	ΔH = -100 kJ
A + B ==> 2D	ΔH = -150 kJ
Target: E ==> D	ΔH = ???

Question 15

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Gi	ve	en:	
\sim			

C + D ==> 2 A + E	ΔH = -300 kJ
3 B ==> 2 A + D	ΔH = -200 kJ
B + E ==> C + D	ΔH = -250 kJ
Target:	
E ==> B + C	$\Delta H = ???$

Question Group 6 Question 16

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given:

3 A + E ==> 2 C	ΔH = +100 kJ
C + 2 D ==> 2 B	ΔH = -200 kJ
C + D ==> A + E	ΔH = -150 kJ
Target:	
2 B + D ==> 2 E	ΔH = ???

Question 17

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given:

2 B ==> C + E	ΔH = +300 kJ
D + E ==> 3 A	ΔH = -250 kJ
A + B ==> E	ΔH = +100 kJ
Target:	
C + D ==> A	ΔH = ???

Question 18

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given:	
C + 2 D ==> A + E	ΔH = +300 kJ
2 A + E ==> B + C	ΔH = +50 kJ
A + E ==> C + D	ΔH = -250 kJ
Target:	
B ==> A	ΔH = ???

Wizard Difficulty Level Question Group 7 Question 19

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given

$2 WO_{2(s)} + O_{2(g)} = 2 WO_{3(s)}$	∆H = -506 kJ
$2 W_{(s)} + 3 O_{2(g)} = 2 WO_{3(s)}$	∆H = -1686 kJ

Target:

 $2 W_{(s)} + 2 O_{2(g)} = 2 WO_{2(s)}$

Question 20

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given:

$N_{2(g)} + O_{2(g)} \rightarrow 2 NO_{(g)}$	ΔH = +180.5 kJ
$NO_{(g)}$ + ¹ / ₂ $O_{2(g)} \rightarrow NO_{2(g)}$	∆H = –57.06 kJ

Target

 $N_{2(g)}$ + 2 $O_{2(g)}$ \rightarrow 2 $NO_{2(g)}$

Question 21

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

$N_2H_{4(I)} + O_{2(g)} = N_{2(g)} + 2 H_2O_{(g)}$	ΔH = -534.2 kJ
$2 H_{2(g)} + O_{2(g)} ==> 2 H_2O_{(g)}$	∆H = -483.6 kJ

Target:

 $N_{2(g)}$ + 2 $H_{2(g)}$ ==> $N_2H_{4(I)}$

Question Group 8 Question 22

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given

$H_{2(g)} + F_{2(g)} = 2 HF_{(g)}$	∆H = -537kJ
$C_{(s)}$ + 2 $F_{2(g)}$ ==> $CF_{4(g)}$	∆H = -680kJ
$2 C_{(s)} + 2 H_{2(g)} = C_2 H_{4(g)}$	ΔH = 52.3kJ

Target:

 $C_2H_{4(g)}$ + 6 $F_{2(g)}$ ==> 2 $CF_{4(g)}$ + 4 $HF_{(g)}$

Question 23

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given:

Target:

 $2 C_{(s)} + H_{2(g)} = > C_2 H_{2(g)}$

Question 24

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given

$H_{2(g)}$ + ½ $O_{2(g)} \rightarrow H_2O_{(g)}$	ΔH = –286 kJ
$C_2H_{4(g)} \ + \ 3 \ O_{2(g)} \ \rightarrow \ 2 \ CO_{2(g)} \ + \ 2 \ H_2O_{(g)}$	∆H = −1411 kJ
$C_2H_{6(g)} \ + \ 3/2 \ O_{2(g)} \ \rightarrow \ 2 \ CO_{2(g)} \ + \ 3 \ H_2O_{(g)}$	∆H = −1560 kJ

Target

 $C_2H_{4(g)} \hspace{.1in} + \hspace{.1in} H_{2(g)} \hspace{.1in} \rightarrow \hspace{.1in} C_2H_{6(g)}$

Question Group 9 Question 25

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given

$2 H_{2(g)} + O_{2(g)} \rightarrow 2 H_2O_{(I)}$	∆H = -571.6 kJ
$N_2O_{5(g)}$ + $H_2O_{(l)} \rightarrow 2 HNO_{3(l)}$	∆H = -73.7 kJ
$1\!$	∆H = -174.1 kJ

Target:

 $N_{2(g)} \ + \ 5/2 \ O_{2(g)} \ \rightarrow \ N_2O_{5(g)}$

Question 26

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given

$2 \text{ Mg}_{(s)} + O_{2(g)} \rightarrow 2 \text{ MgO}_{(s)}$	ΔH = -1203.6 kJ
$Mg(OH)_{2(s)} \rightarrow MgO_{(s)} + H_2O_{(l)}$	ΔH = +37.1 kJ
$2 H_{2(g)} + O_{2(g)} \rightarrow 2 H_2O_{(I)}$	ΔH = -571.7 kJ

Target:

 $Mg_{(s)} \ + \ O_{2(g)} \ + \ H_{2(g)} \ \rightarrow \ Mg(OH)_{2(s)}$

Question 27

Step 1: Manipulate (reverse, multiply by a factor) and add the given equations to produce the target equation.

Step 2: Now use given ΔH values and the manipulations you have made to determine the ΔH for the target reaction.

Given:

$C_{(s)}$ + $O_{2(g)} \rightarrow CO_{2(g)}$	ΔH = -393.5 kJ/mol
$H_{2(g)}$ + 1/2 $O_{2(g)} \rightarrow H_2O_{(I)}$	$\Delta H = -285.8 \text{ kJ/mol}$
$4 C_{(s)} + 5 H_{2(g)} \rightarrow C_4 H_{10(g)}$	ΔH = -125.7 kJ/mol

Target:

 $C_4 H_{10(g)} \ + \ 13/2 \ O_{2(g)} \ \rightarrow \ 4 \ CO_{2(g)} \ + \ 5 \ H_2 O_{(l)}$