Heat of Formation

Activity 1: Equations Question Group 1 Question 1

The standard heat of formation of $CH_{4(g)}$ is -74.8 kJ/mol. Which of the following chemical equations and corresponding ΔH values are consistent with this fact? Identify all that apply.

$C_{(s)}$ + 2 $H_{2(g)}$ ==> $CH_{4(g)}$	ΔH = -74.8 kJ
$CH_{4(g)} = C_{(s)} + 2 H_{2(g)}$	ΔH = +74.8 kJ
$C_{(s)} + H_{4(g)} = > CH_{4(g)}$	ΔH = -74.8 kJ
$CH_{4(l)} = CH_{4(g)}$	ΔH = -74.8 kJ
$C_{(g)}$ + 4 $H_{(g)}$ ==> $CH_{4(g)}$	ΔH = -74.8 kJ
$CH_{4(g)} = C_{(s)} + 4 H_{(g)}$	ΔH = +74.8 kJ

Question 2

The standard heat of formation of $C_3H_{8(g)}$ is -104 kJ/mol. Which of the following chemical equations and corresponding ΔH values are consistent with this fact? Identify all that apply.

Question 3

The standard heat of formation of $CCl_{4(I)}$ is -135 kJ/mol. Which of the following chemical equations and corresponding ΔH values are consistent with this fact? Identify all that apply.

$C_{(s)} + 2 Cl_{2(g)} == CCl_{4(g)}$	ΔH = -135 kJ
$CCI_{4(I)} = C(s) + 2 CI_{2(g)}$	∆H = +135 kJ
$C_{(s)}$ + $Cl_{4(g)}$ ==> $CCl_{4(g)}$	ΔH = -135 kJ
$CCI_{4(g)} \implies CCI_{4(I)}$	ΔH = -135 kJ
$C_{(g)} + 4 Cl_{(g)} ==> CCl_{4(l)}$	ΔH = -135 kJ
$CCI_{4(I)} = C(s) + 4 CI(g)$	∆H = +135 kJ

Question Group 2 Question 4

The standard heat of formation of $H_2O_{(g)}$ is -242 kJ/mol. Which of the following chemical equations and corresponding ΔH values are consistent with this fact? Identify all that apply.

$H_{2(g)} + \frac{1}{2} O_{2(g)} ==> H_2O_{(g)}$
$2 H_{2(g)} + O_{2(g)} = 2 H_2O_{(g)}$
$2 H_2O_{(g)} = 2 H_{2(g)} + O_{2(g)}$
$2 H_{2(g)} + O_{2(g)} = 2 H_2O_{(g)}$
$H_{2(g)} + O_{(g)} ==> H_2O_{(g)}$
$2 H_{(g)} + O_{(g)} = H_2O_{(g)}$

 $\Delta H = -242 \text{ kJ}$ $\Delta H = -484 \text{ kJ}$ $\Delta H = +484 \text{ kJ}$ $\Delta H = -242 \text{ kJ}$ $\Delta H = -242 \text{ kJ}$ $\Delta H = -242 \text{ kJ}$

Question 5

The standard heat of formation of $C_2H_{6(g)}$ is -84.7 kJ/mol. Which of the following chemical equations and corresponding ΔH values are consistent with this fact? Identify all that apply.

$2 C_{(s)} + 3 H_{2(g)} = C_2 H_{6(g)}$	$\Delta H = -84.7 \text{ kJ/mol}$
$C_{2(g)} + 3 H_{2(g)} = C_2 H_{6(g)}$	ΔH = -84.7 kJ/mol
$2 C_{(s)} + 6 H_{(g)} = > C_2 H_{6(g)}$	ΔH = -84.7 kJ/mol
$C_{2(g)} + H_{6(g)} = > C_2 H_{6(g)}$	$\Delta H = -84.7 \text{ kJ/mol}$
$C_2H_{6(g)} = C_{2(g)} + H_{6(g)}$	ΔH = +84.7 kJ/mol
$C_2H_{6(g)} = 2 C_{(s)} + 6 H_{(g)}$	ΔH = +84.7 kJ/mol

Question 6

The standard heat of formation of $Al_2O_{3(s)}$ is -1676 kJ/mol. Which of the following chemical equations and corresponding ΔH values are consistent with this fact? Identify all that apply.

$2 AI_{(s)} + 3/2 O_{2(g)} = AI_2O_{3(s)}$	ΔH = -1676 kJ
$4 AI_{(s)} + 3 O_{2(g)} = 2 AI_2O_{3(s)}$	ΔH = -3352 kJ
$2 Al_2O_{3(s)} = 3 Al_{(s)} + 3 O_{2(g)}$	$\Delta H = +3352 \text{ kJ}$
$AI_{2(s)} + O_{3(g)} = AI_2O_{3(s)}$	ΔH = -1676 kJ
$AI_2O_{3(s)} = AI_{2(s)} + O_{3(g)}$	ΔH = +1676 kJ
$2 AI_{2(s)} + 2 O_{3(g)} = 2 AI_2O_{3(s)}$	ΔH = -3352 kJ

Question Group 3 Question 7

The standard heat of formation of $BaCO_{3(s)}$ is -1216 kJ/mol. Which of the following chemical equations and corresponding ΔH values are consistent with this fact? Identify all that apply.

$Ba(s) + C(s) + 3/2 O_{2(g)} = BaCO_{3(s)}$	∆H = -1216 kJ
$2 Ba(s) + 2 C(s) + 3 O_{2(g)} = 2 BaCO_{3(s)}$	∆H = -2432 kJ
$BaCO_{3(s)} = Ba_{(s)} + C_{(s)} + 3/2 O_{2(g)}$	ΔH = +1216 kJ
$Ba(s) + C(s) + O_{3(g)} = BaCO_{3(s)}$	∆H = -1216 kJ
$2 \text{ BaCO}_{3(s)} = Ba_{2(s)} + C_{2(s)} + 3/2 O_{2(g)}$	ΔH = +2432 kJ
$BaCO_{3(s)} = > 1/3 Ba_{3(s)} + 1/3 C_{3(s)} + O_{3(g)}$	ΔH = +1216 kJ

Question 8

The standard heat of formation of $CaCO_{3(s)}$ is -1207 kJ/mol. Which of the following chemical equations and corresponding ΔH values are consistent with this fact? Identify all that apply.

$Ca_{(s)} + C_{(s)} + 3/2 O_{2(g)} = CaCO_{3(s)}$	∆H = -1207 kJ
$2 Ca_{(s)} + 2 C_{(s)} + 3 O_{2(g)} = 2 CaCO_{3(s)}$	∆H = -2414 kJ
$CaCO_{3(s)} = Ca_{(s)} + C_{(s)} + 3/2 O_{2(g)}$	ΔH = +1207 kJ
$Ca(s) + C(s) + O_{3(g)} = CaCO_{3(s)}$	ΔH = -1207 kJ
$2 CaCO_{3(s)} = Ca_{2(s)} + C_{2(s)} + 3/2 O_{2(g)}$	ΔH = +2414 kJ
$CaCO_{3(s)} = > 1/3 Ca_{3(s)} + 1/3 C_{3(s)} + O_{3(g)}$	ΔH = +1207 kJ

Question 9

The standard heat of formation of MgCO_{3(s)} is -1096 kJ/mol. Which of the following chemical equations and corresponding ΔH values are consistent with this fact? Identify all that apply.

$Mg(s) + C(s) + 3/2 O_{2(g)} = MgCO_{3(s)}$	ΔH = -1096 kJ
$2 Mg(s) + 2 C(s) + 3 O_{2(g)} = 2 MgCO_{3(s)}$	ΔH = -2192 kJ
$MgCO_{3(s)} = Mg_{(s)} + C_{(s)} + 3/2 O_{2(g)}$	$\Delta H = +1096 \text{ kJ}$
$Mg(s) + C(s) + O_{3(g)} = MgCO_{3(s)}$	∆H = -1096 kJ
$2 \text{ MgCO}_{3(s)} = Mg_{2(s)} + C_{2(s)} + 3/2 O_{2(g)}$	$\Delta H = +2192 \text{ kJ}$
$MgCO_{3(s)} = 1/3 Mg_{3(s)} + 1/3 C_{3(s)} + O_{3(g)}$	$\Delta H = +1096 \text{ kJ}$

Question Group 4 Question 10

The standard heat of formation of KClO_{4(s)} is -433 kJ/mol. Which of the following chemical equations and corresponding Δ H values are consistent with this fact? Identify all that apply.

$K_{(s)} + \frac{1}{2} Cl_{2(g)} + 2 O_{2(g)} = KClO_{4(s)}$	∆H = -433 kJ
$2 K_{(s)} + Cl_{2(g)} + 4 O_{2(g)} = 2 KClO_{4(s)}$	ΔH = -866 kJ
$K_{(s)} + CI_{(g)} + 2 O_{2(g)} = KCIO_{4(s)}$	ΔH = -433 kJ
$K_{(s)} + CI_{(g)} + O_{4(g)} = KCIO_{4(s)}$	∆H = -433 kJ
$KCIO_{4(s)} == K_{(s)} + CI_{(g)} + O_{4(g)}$	$\Delta H = +433 \text{ kJ}$
$2 \text{ KClO}_{4(s)} \implies 2 \text{ K}_{(s)} + 2 \text{ Cl}_{(g)} + 4 \text{ O}_{2(g)}$	$\Delta H = +866 \text{ kJ}$

Question 11

The standard heat of formation of $KNO_{3(s)}$ is -495 kJ/mol. Which of the following chemical equations and corresponding ΔH values are consistent with this fact? Identify all that apply.

$K_{(s)} + \frac{1}{2} N_{2(g)} + \frac{3}{2} O_{2(g)} = KNO_{3(s)}$	∆H = -495 kJ
$2 K_{(s)} + N_{2(g)} + 3 O_{2(g)} = 2 KNO_{3(s)}$	ΔH = -990 kJ
$K_{(s)} + N_{(g)} + O_{3(g)} = KNO_{3(s)}$	∆H = -495 kJ
$KNO_{3(s)} = K_{(s)} + N_{(g)} + 3 O_{(g)}$	∆H =+495 kJ
$KNO_{3(s)} = K_{(s)} + N_{(g)} + O_{3(g)}$	∆H = +495 kJ
$2 \text{ KNO}_{3(s)} = 2 \text{ K}_{(s)} + 2 \text{ N}_{(g)} + 6 \text{ O}_{(g)}$	$\Delta H = +990 \text{ kJ}$

Question 12

The standard heat of formation of $HNO_{3(1)}$ is -174 kJ/mol. Which of the following chemical equations and corresponding ΔH values are consistent with this fact? Identify all that apply.

$\frac{1}{2} H_{2(g)} + \frac{1}{2} N_{2(g)} + \frac{3}{2} O_{2(g)} = HNO_{3(I)}$	∆H = -174 kJ
$H_{2(g)} + N_{2(g)} + 3 O_{2(g)} = 2 HNO_{3(I)}$	ΔH = -348 kJ
$H_{2(g)} + 2 N_{(g)} + 2 O_{3(g)} = HNO_{3(l)}$	ΔH = -348 kJ
$HNO_{3(1)} = H_{(g)} + N_{(g)} + 3 O_{(g)}$	∆H =+174 kJ
$HNO_{3(I)} = H_{(g)} + N_{(g)} + O_{3(g)}$	ΔH = +174 kJ
$2 HNO_{3(1)} = 2 H_{(g)} + 2 N_{(g)} + 6 O_{(g)}$	∆H = +348 kJ

Activity 2: Heat of Reaction 1

Activity 2 questions involve multi-part exercises that guide students from knowledge of the heat of formation values to the determination of the heat of reaction. The basic idea of the questions are presented below. However, the actual activity is significantly more sophisticated than a static question on a page.

Question Group 5 Question 13

Determine the enthalpy change of the reaction: $2 CO_{(g)} + O_{2(g)} = 2 CO_{2(g)}$

ΔH_f Values CO_(g): -110.5 kJ/mol

CO_{2(g)}: -393.5 kJ/mol

Question 14

Determine the enthalpy change of the reaction: 2 H₂O_{2(I)} ==> 2 H₂O_(I) + O_{2(g)}

ΔH_f Values

H ₂ O _{2(I)} :	-187.8 kJ/mol
H ₂ O(I):	-285.8 kJ/mol

Question Group 6 Question 15

Determine the enthalpy change of the reaction: $N_2H_{4(I)} + O_{2(g)} = N_{2(g)} + 2 H_2O_{(g)}$

ΔH_f Values

$N_2H_{4(l)}$	+50.6 kJ/mol
H ₂ O _(g) :	-241.8 kJ/mol

Question 16

Determine the enthalpy change of the reaction: $Fe_3O_{4(s)} + 4 H_{2(g)} = 3 Fe_{(s)} + 4 H_2O_{(g)}$

$\Delta H_{\rm f}$ Values

Fe ₃ O _{4(s)}	-1118.4 kJ/mol
$H_2O_{(g)}$	-241.8 kJ/mol

Question Group 7

Question 17 Determine the enthalpy change of the reaction: $2 \text{ KClO}_{3(s)} = 2 \text{ KCl}_{(s)} + 3 \text{ O}_{2(g)}$

ΔH_f Values

KClO_{3(s)} -391.4 kJ/mol KCl_(s) -436.68 kJ/mol

Question 18

Determine the enthalpy change of the reaction: $KCIO_{4(s)} = KCI_{(s)} + 2 O_{2(g)}$

$\Delta H_{\rm f} \ Values$

KCIO _{4(s)}	-430.12 kJ/mol
KCI _(s)	-436.68 kJ/mol

Activity 3: Heat of Reaction 2

Activity 3 questions involve multi-part exercises that guide students from knowledge of the heat of formation values to the determination of the heat of reaction. The basic idea of the questions are presented below. However, the actual activity is significantly more sophisticated than a static question on a page.

Question Group 8 Question 19

Determine the enthalpy change of the reaction: $CH_{4(g)} + 2 O_{2(g)} = O_{2(g)} + 2 H_2O_{(I)}$

ΔH_f Values

CH _{4(g)} :	-74.8 kJ/mol
CO _{2(g)} :	-393.5 kJ/mol
H ₂ O(I):	-285.8 kJ/mol

Question 20

Determine the enthalpy change of the reaction: $C_3H_{8(g)} + 5 O_{2(g)} = 3 CO_{2(g)} + 4 H_2O_{(g)}$

ΔH_f Values

C ₃ H _{8(g)} :	-74.8 kJ/mol
CO _{2(g)} :	-393.5 kJ/mol
H ₂ O _(g) :	-241.8 kJ/mol

Question 21

Determine the enthalpy change of the reaction: 2 $C_2H_5OH_{(1)}$ + 7 $O_{2(g)}$ ==> 4 $CO_{2(g)}$. + 6 $H_2O_{(g)}$

ΔH_f Values

C ₂ H ₅ OH _(I) :	-277.7 kJ/mol
CO _{2(g)} :	-393.5 kJ/mol
H ₂ O _(g) :	-241.8 kJ/mol

Question Group 9 Question 22

Determine the enthalpy change of the reaction: HNO_{3(g)} + 4 H_{2(g)} ==> $NH_{3(g)}$ + 3 H₂O_(g)

ΔH_f Values

HNO _{3(g)} :	-134.3 kJ/mol
NH _{3(g)} :	-46.1 kJ/mol

H₂O_(g): -241.8 kJ/mol

Question 23

Determine the enthalpy change of the reaction: 2 CH₃OH_(l) + 3 O_{2(g)} ==> 2 CO_{2(g)} + 4 H₂O_(g)

ΔH_f Values

CH ₃ OH _(I)	-238.7 kJ/mol
CO _{2(g)}	-393.5 kJ/mol
$H_2O_{(g)}$	-241.8 kJ/mol

Question 24

Determine the enthalpy change of the reaction: 2 $C_2H_{2(g)}$ + 5 $O_{2(g)}$ ==> 4 $CO_{2(g)}$ + 2 $H_2O_{(g)}$

ΔH_f Values

$C_2H_{2(g)}$	+226.7 kJ/mol
CO _{2(g)}	-393.5 kJ/mol
$H_2O_{(g)}$	-241.8 kJ/mol

Question Group 10 Question 25

Determine the enthalpy change of the reaction: Al₂O_{3(s)} + 3 H₂O_(g) ==> 2 Al(OH)_{3(s)}

$\Delta H_{\rm f}$ Values

Al ₂ O _{3(s)}	-1675.5 kJ/mol
$H_2O_{(g)}$	-241.8 kJ/mol
AI(OH) _{3(s)}	-1277 kJ/mol

Question 26

Determine the enthalpy change of the reaction: $Fe_2O_{3(s)} + 3 CO_{(g)} \rightarrow 2 Fe_{(s)} + 3 CO_{2(g)}$

ΔH_f Values

Fe ₂ O _{3(s)}	-824.2 kJ/mol
CO _(g)	-110.5 kJ/mol
CO _{2(g)}	-393.5 kJ/mol

Question 27

Determine the enthalpy change of the reaction: $SiC_{(s)}~+~2~CO_{(g)}~\rightarrow~SiO_{2(s)}~+~3~C_{(s)}$

ΔH_f Values

SiC _(s)	-71.5 kJ/mol
CO _(g)	-110.5 kJ/mol
SiO _{2(s)}	-910.86 kJ/mol