Measuring the Quantity of Heat

Activity 1 Question Group 1 Question 1 In an exothermic process, a quantity of heat (\mathbf{Q}) is released by a system, causing a change in temperature (ΔT) of the surroundings. The surroundings consist of a mass (\mathbf{m}) of water. The release of a 4.18 J of heat causes 1.00 g of H ₂ O to have a ΔT of °C. b 41.8 J of heat causes 5.00 g of H ₂ O to have a ΔT of °C. c 418 J of heat causes g of H ₂ O to have a ΔT of 2.50°C. d J of heat causes 50.0 g of H ₂ O to have a ΔT of 8.00°C. e 2400 J of heat causes 78.5 g of H ₂ O to have a ΔT of °C.
Question 2 In an exothermic process, a quantity of heat (Q) is released by a system, causing a change in temperature (ΔT) of the surroundings. The surroundings consist of a mass (m) of water. The release of a 4.18 J of heat causes 1.00 g of H ₂ O to have a ΔT of °C. b 41.8 J of heat causes 2.00 g of H ₂ O to have a ΔT of °C. c 418 J of heat causes g of H ₂ O to have a ΔT of 4.00°C. d J of heat causes 100.0 g of H ₂ O to have a ΔT of 8.00°C. e 2800 J of heat causes 61.5 g of H ₂ O to have a ΔT of °C.
Question 3 In an exothermic process, a quantity of heat ($\bf Q$) is released by a system, causing a change in temperature ($\bf \Delta T$) of the surroundings. The surroundings consist of a mass ($\bf m$) of water. The release of a 4.18 J of heat causes 1.00 g of H ₂ O to have a $\bf \Delta T$ of°C. b 41.8 J of heat causes 4.00 g of H ₂ O to have a $\bf \Delta T$ of°C. c 418 J of heat causes g of H ₂ O to have a $\bf \Delta T$ of 2.00°C. d J of heat causes 25.0 g of H ₂ O to have a $\bf \Delta T$ of 8.00°C. e 3200 J of heat causes 82.4 g of H ₂ O to have a $\bf \Delta T$ of °C.

In an exothermic process, a quantity of heat (Q) is released by a system, causing a
change in temperature (AT) of the surroundings. The surroundings consist of a mass
(m) of water. The release of

a. ... 4.18 J of heat causes 1.00 g of H_2O to have a ΔT of _____ °C. b. ... 41.8 J of heat causes 2.50 g of H_2O to have a ΔT of ____ °C. c. ... 418 J of heat causes ____ g of H_2O to have a ΔT of 5.00°C. d. ... ____ J of heat causes 20.0 g of H_2O to have a ΔT of 8.00°C. e. ... 4600 J of heat causes 56.9 g of H_2O to have a ΔT of ____ °C.

Activity 2 Question Group 2 Question 5

An exothermic reaction causes Q J of heat to release to the surrounding m g of water at a temperature of T_i °C, causing it to increase its temperature by ΔT °C to a final temperature of T_f °C.

	Q (J)	m (g)	T _i (°C)	T _f (°C)	ΔT (°C)
a.		100.0	24.3		16.5
b.		100.0	16.2	41.5	
c.	9250	100.0	15.8		
d.	12500	50.0	9.2		
e.	13200		7.5	48.8	

Question 6

An exothermic reaction causes Q J of heat to release to the surrounding m g of water at a temperature of T_i °C, causing it to increase its temperature by ΔT °C to a final temperature of T_f °C.

	Q (J)	m (g)	T _i (°C)	T _f (°C)	ΔT (°C)
a.		50.0	21.4		26.4
b.		50.0	11.3	58.6	
c.	10500	100.0	7.9		
d.	13500	100.0	5.6		
e.	11800		10.2	46.6	

An exothermic reaction causes Q J of heat to release to the surrounding m g of water at a temperature of T_i °C, causing it to increase its temperature by ΔT °C to a final temperature of T_f °C.

	Q (J)	m (g)	T _i (°C)	T _f (°C)	ΔT (°C)
a.		50.0	19.6		22.8
b.		100.0	18.2	39.1	
c.	11400	50.0	5.4		
d.	10600	80.0	12.9		
e.	15500		4.9	56.7	

Question 8

An exothermic reaction causes Q J of heat to release to the surrounding m g of water at a temperature of T_i °C, causing it to increase its temperature by ΔT °C to a final temperature of T_f °C.

	Q (J)	m (g)	T _i (°C)	T _f (°C)	ΔT (°C)
a.		100.0	18.2		14.0
b.		50.0	12.5	49.4	
c.	8820	80.0	12.8		
d.	10900	80.0	7.4		
e.	14600		10.1	56.3	

An exothermic reaction causes Q J of heat to release to the surrounding m g of water at a temperature of T_i °C, causing it to increase its temperature by ΔT °C to a final temperature of T_f °C.

	Q (J)	m (g)	T _i (°C)	T _f (°C)	ΔT (°C)
a.		50.0	21.5		28.2
b.		100.0	14.6	39.1	
c.	10100	75.0	9.8		
d.	12500	50.0	7.6		
e.	13600		8.8	52.5	

Question 10

An exothermic reaction causes \mathbf{Q} J of heat to release to the surrounding \mathbf{m} g of water at a temperature of \mathbf{T}_i °C, causing it to increase its temperature by $\Delta \mathbf{T}$ °C to a final temperature of \mathbf{T}_f °C.

	Q (J)	m (g)	T _i (°C)	T _f (°C)	ΔT (°C)
a.		100.0	22.4		19.1
b.		50.0	10.4	52.5	
c.	10800	50.0	15.8		
d.	11200	100.0	7.6		
e.	15400		4.4	58.8	

Activity 3 Question 11

In an effort to determine the heat of reaction (ΔH_{rxn}), **X** grams of a reactant (molar mass = 40.00 g/mol) react, generating Q kJ of heat. This causes **m** g of H₂O O in a calorimeter to increase its temperature by ΔT °C.

	mass reactant (g)	moles reactant	m of H₂O (g)	ΔT (°C)	Q (kJ)	ΔH _{rxn} (kJ/mol)
a.	20.00		100.0	64.0		
b.	10.00		50.0	58.6		
c.	4.00		50.0			51.2
d.			80.0		10.0	50.0
e.		0.400		23.6	18.8	

Question 12

In an effort to determine the heat of reaction (ΔH_{rxn}), **X** grams of a reactant (molar mass = 40.00 g/mol) react, generating Q kJ of heat. This causes **m** g of H₂O O in a calorimeter to increase its temperature by ΔT °C.

	mass reactant (g)	moles reactant	m of H₂O (g)	ΔT (°C)	Q (kJ)	ΔH _{rxn} (kJ/mol)
a.	20.00		50.0	82.0		
b.	10.00		100.0	21.2		
c.	4.00		50.0			35.4
d.			75.0		12.1	34.6
e.		0.400		45.4	14.1	

In an effort to determine the heat of reaction (ΔH_{rxn}), **X** grams of a reactant (molar mass = 80.00 g/mol) react, generating Q kJ of heat. This causes **m** g of H₂O O in a calorimeter to increase its temperature by ΔT °C.

	mass reactant (g)	moles reactant	m of H₂O (g)	ΔT (°C)	Q (kJ)	ΔH _{rxn} (kJ/mol)
a.	40.00		100.0	29.9		
b.	20.00		50.0	32.1		
c.	16.00		50.0			25.4
d.			80.0		12.2	24.8
e.		0.400		25.9	10.6	

Question 14

In an effort to determine the heat of reaction (ΔH_{rxn}), **X** grams of a reactant (molar mass = 80.00 g/mol) react, generating Q kJ of heat. This causes **m** g of H₂O O in a calorimeter to increase its temperature by ΔT °C.

	mass reactant (g)	moles reactant	m of H₂O (g)	ΔT (°C)	Q (kJ)	ΔH _{rxn} (kJ/mol)
a.	20.00		50.0	36.2		
b.	40.00		100.0	35.9		
c.	8.00		50.0			29.7
d.			80.0		14.8	30.5
e.		0.750		56.4	22.1	

In an effort to determine the heat of reaction (ΔH_{rxn}), **X** grams of a reactant (molar mass = 120.00 g/mol) react, generating Q kJ of heat. This causes **m** g of H₂O O in a calorimeter to increase its temperature by ΔT °C.

	mass reactant (g)	moles reactant	m of H₂O (g)	ΔT (°C)	Q (kJ)	ΔH _{rxn} (kJ/mol)
a.	60.00		200.0	23.9		
b.	30.00		100.0	24.2		
c.	12.00		50.0			39.9
d.			80.0		10.1	40.6
e.		0.300		32.7	12.1	

Question 16

In an effort to determine the heat of reaction (ΔH_{rxn}), **X** grams of a reactant (molar mass = 120.00 g/mol) react, generating Q kJ of heat. This causes **m** g of H₂O O in a calorimeter to increase its temperature by ΔT °C.

	mass reactant (g)	moles reactant	m of H₂O (g)	ΔT (°C)	Q (kJ)	ΔH _{rxn} (kJ/mol)
a.	30.00		50.0	26.3		
b.	60.00		100.0	25.4		
c.	24.00		50.0			22.3
d.			80.0		10.8	21.8
e.		0.650		30.9	14.2	