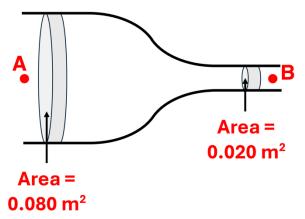

Volumetric Flow Rate and Velocity

Activity 1: Case Studies Question Group 1 Question 1

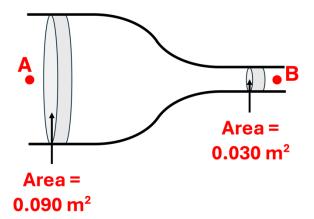
Fluid in a pipe undergoes a sudden change from a wide cross-sectional area to a narrow cross-sectional area as it flows from location **A** to location **B**.



How does the volumetric flow rate (\mathbf{Q} in m³/s) and the flow velocity (\mathbf{v} in m/s) at \mathbf{B} compare to that at \mathbf{A} ?

The Q_B is _____ the Q_A . The v_B is _____ the v_A .

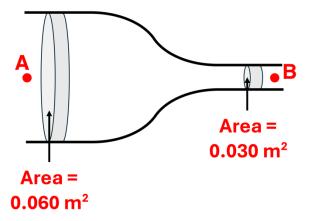
Question 2


Fluid in a pipe undergoes a sudden change from a wide cross-sectional area to a narrow cross-sectional area as it flows from location **A** to location **B**.

How does the volumetric flow rate (\mathbf{Q} in m³/s) and the flow velocity (\mathbf{v} in m/s) at \mathbf{B} compare to that at \mathbf{A} ?

The Q_B is _____ the Q_A . The v_B is _____ the v_A .

Fluid in a pipe undergoes a sudden change from a wide cross-sectional area to a narrow cross-sectional area as it flows from location **A** to location **B**.

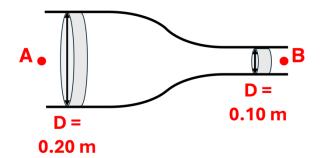


How does the volumetric flow rate ($\bf Q$ in m³/s) and the flow velocity ($\bf v$ in m/s) at $\bf B$ compare to that at $\bf A$?

The Q_B is _____ the Q_A . The v_B is _____ the v_A .

Question 4

Fluid in a pipe undergoes a sudden change from a wide cross-sectional area to a narrow cross-sectional area as it flows from location **A** to location **B**.

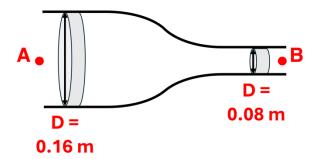


How does the volumetric flow rate (\mathbf{Q} in m³/s) and the flow velocity (\mathbf{v} in m/s) at \mathbf{B} compare to that at \mathbf{A} ?

The Q_B is _____ the Q_A . The v_B is _____ the v_A .

Question Group 2 Question 5

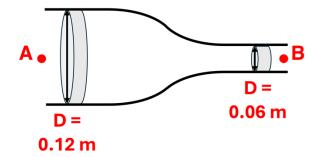
Fluid in a pipe undergoes a sudden change from an area with a large diameter (D) to an area with a small diameter (D) as it flows from location **A** to location **B**.



How does the volumetric flow rate (\mathbf{Q} in m³/s) and the flow velocity (\mathbf{v} in m/s) at \mathbf{B} compare to that at \mathbf{A} ?

The Q_B is _____ the Q_A . The v_B is _____ the v_A .

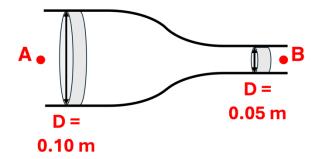
Question 6


Fluid in a pipe undergoes a sudden change from an area with a large diameter (D) to an area with a small diameter (D) as it flows from location **A** to location **B**.

How does the volumetric flow rate ($\bf Q$ in m³/s) and the flow velocity ($\bf v$ in m/s) at $\bf B$ compare to that at $\bf A$?

The \mathbf{Q}_B is _____ the \mathbf{Q}_A . The \mathbf{v}_B is _____ the \mathbf{v}_A .

Fluid in a pipe undergoes a sudden change from an area with a large diameter (D) to an area with a small diameter (D) as it flows from location **A** to location **B**.

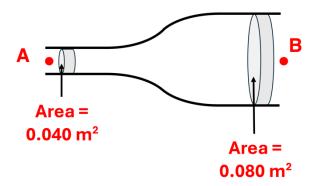


How does the volumetric flow rate (\mathbf{Q} in m³/s) and the flow velocity (\mathbf{v} in m/s) at \mathbf{B} compare to that at \mathbf{A} ?

The Q_B is _____ the Q_A . The v_B is _____ the v_A .

Question 8

Fluid in a pipe undergoes a sudden change from an area with a large diameter (D) to an area with a small diameter (D) as it flows from location **A** to location **B**.

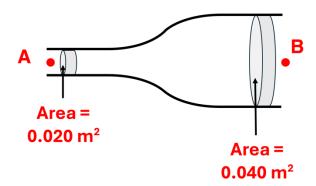


How does the volumetric flow rate (\mathbf{Q} in m³/s) and the flow velocity (\mathbf{v} in m/s) at \mathbf{B} compare to that at \mathbf{A} ?

The Q_B is _____ the Q_A . The v_B is _____ the v_A .

Question Group 3 Question 9

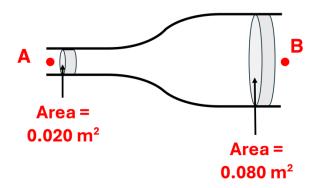
Fluid in a pipe undergoes a sudden change from a narrow cross-sectional area to a wide cross-sectional area as it flows from location **A** to location **B**.



How does the volumetric flow rate (\mathbf{Q} in m³/s) and the flow velocity (\mathbf{v} in m/s) at \mathbf{B} compare to that at \mathbf{A} ?

The Q_B is _____ the Q_A . The v_B is _____ the v_A .

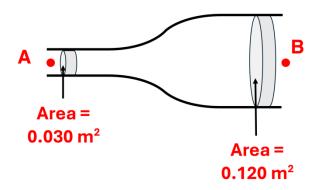
Question 10


Fluid in a pipe undergoes a sudden change from a narrow cross-sectional area to a wide cross-sectional area as it flows from location **A** to location **B**.

How does the volumetric flow rate ($\bf Q$ in m³/s) and the flow velocity ($\bf v$ in m/s) at $\bf B$ compare to that at $\bf A$?

The Q_B is _____ the Q_A . The v_B is _____ the v_A .

Fluid in a pipe undergoes a sudden change from a narrow cross-sectional area to a wide cross-sectional area as it flows from location **A** to location **B**.

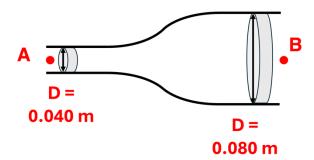


How does the volumetric flow rate ($\bf Q$ in m³/s) and the flow velocity ($\bf v$ in m/s) at $\bf B$ compare to that at $\bf A$?

The Q_B is _____ the Q_A . The v_B is _____ the v_A .

Question 12

Fluid in a pipe undergoes a sudden change from a narrow cross-sectional area to a wide cross-sectional area as it flows from location **A** to location **B**.

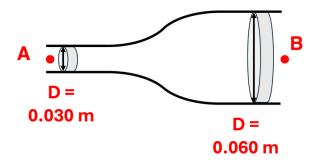


How does the volumetric flow rate (\mathbf{Q} in m³/s) and the flow velocity (\mathbf{v} in m/s) at \mathbf{B} compare to that at \mathbf{A} ?

The \mathbf{Q}_{B} is _____ the \mathbf{Q}_{A} . The \mathbf{v}_{B} is ____ the \mathbf{v}_{A} .

Question Group 4 Question 13

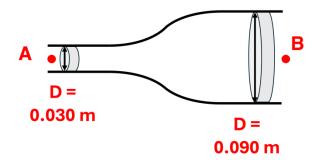
Fluid in a pipe undergoes a sudden change from an area with a small diameter (D) to an area with a large diameter (D) as it flows from location **A** to location **B**.



How does the volumetric flow rate (\mathbf{Q} in m³/s) and the flow velocity (\mathbf{v} in m/s) at \mathbf{B} compare to that at \mathbf{A} ?

The Q_B is _____ the Q_A . The v_B is _____ the v_A .

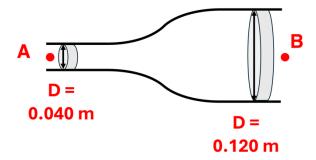
Question 14


Fluid in a pipe undergoes a sudden change from an area with a small diameter (D) to an area with a large diameter (D) as it flows from location **A** to location **B**.

How does the volumetric flow rate (\mathbf{Q} in m³/s) and the flow velocity (\mathbf{v} in m/s) at \mathbf{B} compare to that at \mathbf{A} ?

The Q_B is ______ the Q_A .

Fluid in a pipe undergoes a sudden change from an area with a small diameter (D) to an area with a large diameter (D) as it flows from location **A** to location **B**.



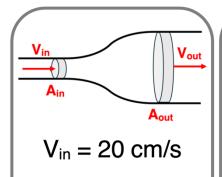
How does the volumetric flow rate (\mathbf{Q} in m³/s) and the flow velocity (\mathbf{v} in m/s) at \mathbf{B} compare to that at \mathbf{A} ?

The \mathbf{Q}_{B} is ______ the \mathbf{Q}_{A} .

Question 16

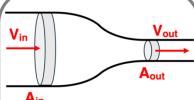
Fluid in a pipe undergoes a sudden change from an area with a small diameter (D) to an area with a large diameter (D) as it flows from location **A** to location **B**.

How does the volumetric flow rate ($\bf Q$ in m³/s) and the flow velocity ($\bf v$ in m/s) at $\bf B$ compare to that at $\bf A$?


The **Q**_B is ______ the **Q**_A.

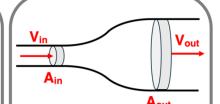
Activity 2: Ranking Tasks

Question Group 5


Question 17

Consider the three situations in which fluid in a pipe flows between regions with a different cross-sectional area (\mathbf{A}). Rank the V_{out} values for the three situations.

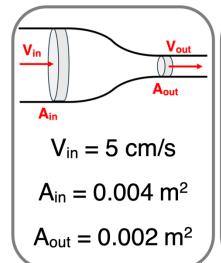
$$A_{in} = 0.002 \text{ m}^2$$


$$A_{out} = 0.008 \text{ m}^2$$

$$V_{in} = 5 \text{ cm/s}$$

$$A_{in} = 0.004 \text{ m}^2$$

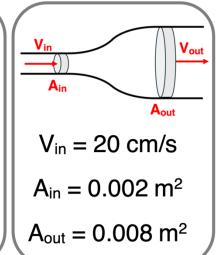
$$A_{out} = 0.002 \text{ m}^2$$

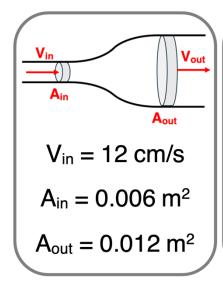

$$V_{in} = 12 \text{ cm/s}$$

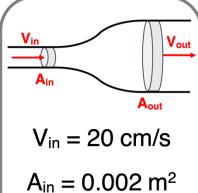
$$A_{in} = 0.006 \text{ m}^2$$

$$A_{out} = 0.012 \text{ m}^2$$

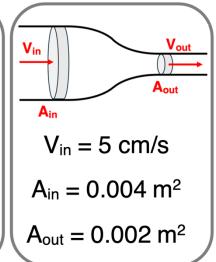
Question 18


Consider the three situations in which fluid in a pipe flows between regions with a different cross-sectional area (\mathbf{A}). Rank the V_{out} values for the three situations.

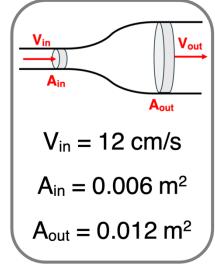

$$V_{in} = 12 \text{ cm/s}$$

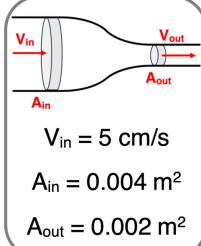

$$V_{in} = 0.006 \text{ m}^2$$

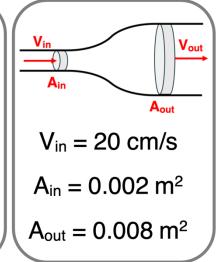
$$A_{out} = 0.012 \text{ m}^2$$



Consider the three situations in which fluid in a pipe flows between regions with a different cross-sectional area (A). Rank the V_{out} values for the three situations.

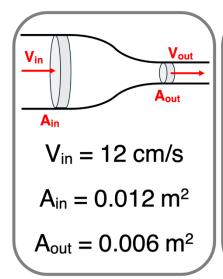


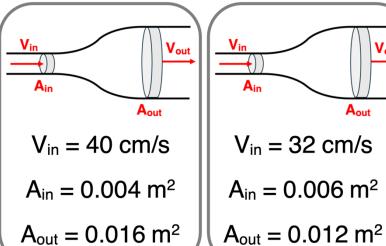




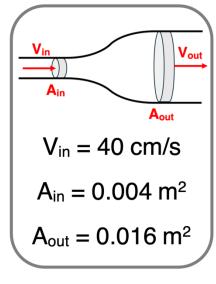
Question 20

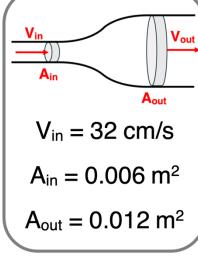
Consider the three situations in which fluid in a pipe flows between regions with a different cross-sectional area (\mathbf{A}). Rank the V_{out} values for the three situations.

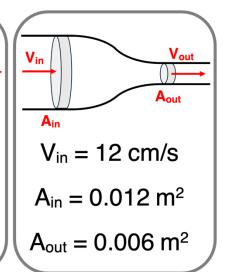




Question Group 6 Question 21

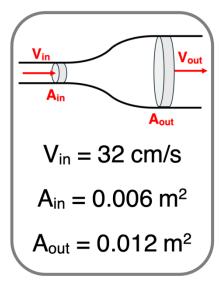

Consider the three situations in which fluid in a pipe flows between regions with different diameters (\mathbf{D}). Rank the V_{out} values for the three situations.

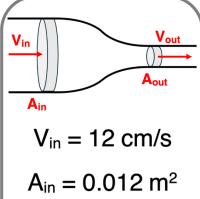


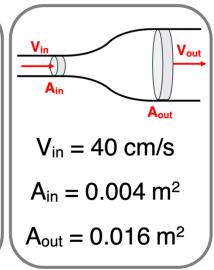


Question 22

Consider the three situations in which fluid in a pipe flows between regions with different diameters (**D**). Rank the V_{out} values for the three situations.

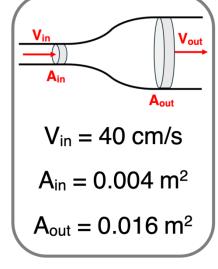


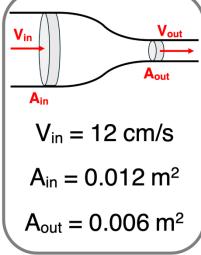


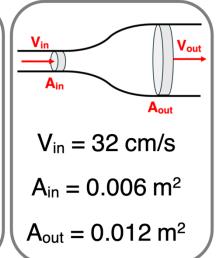

 V_{out}

Aout

Consider the three situations in which fluid in a pipe flows between regions with different diameters (\mathbf{D}). Rank the V_{out} values for the three situations.

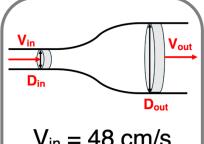




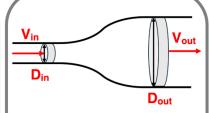

Question 24

Consider the three situations in which fluid in a pipe flows between regions with different diameters (\mathbf{D}). Rank the V_{out} values for the three situations.

 $A_{out} = 0.006 \text{ m}^2$

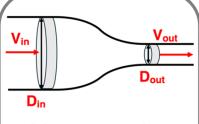


Question Group 7 Question 25


Consider the three situations in which fluid in a pipe flows between regions with a different cross-sectional area (A). Rank the Vout values for the three situations.

$$V_{in} = 48 \text{ cm/s}$$

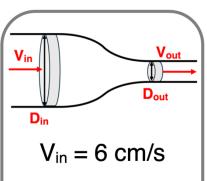
$$D_{in} = 0.020 \; m$$


$$D_{out} = 0.080 \text{ m}$$

$$V_{in} = 32 \text{ cm/s}$$

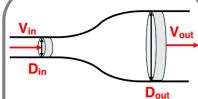
$$D_{in} = 0.060 \text{ m}$$

$$D_{out} = 0.120 \text{ m}$$


$$V_{in} = 6 \text{ cm/s}$$

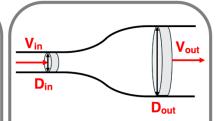
$$D_{in} = 0.100 \text{ m}$$

$$D_{out} = 0.050 \text{ m}$$


Question 26

Consider the three situations in which fluid in a pipe flows between regions with a different cross-sectional area (A). Rank the V_{out} values for the three situations.

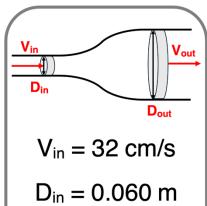
$$D_{in} = 0.100 \text{ m}$$


$$D_{out} = 0.050 \text{ m}$$

$$V_{in} = 48 \text{ cm/s}$$

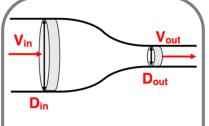
$$D_{in} = 0.020 \text{ m}$$

$$D_{out} = 0.080 \text{ m}$$



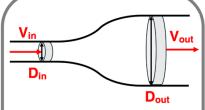
$$V_{in} = 32 \text{ cm/s}$$

$$D_{in} = 0.060 \text{ m}$$


$$D_{out} = 0.120 \text{ m}$$

Consider the three situations in which fluid in a pipe flows between regions with a different cross-sectional area (\mathbf{A}). Rank the V_{out} values for the three situations.

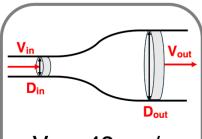
$$D_{in} = 0.060 \text{ m}$$


$$D_{out} = 0.120 \text{ m}$$

 $V_{in} = 6 \text{ cm/s}$

 $D_{in} = 0.100 \text{ m}$

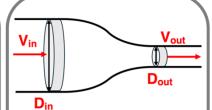
 $D_{out} = 0.050 \text{ m}$


 $V_{in} = 48 \text{ cm/s}$

 $D_{in} = 0.020 \text{ m}$

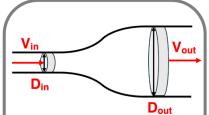
 $D_{out} = 0.080 \text{ m}$

Question 28


Consider the three situations in which fluid in a pipe flows between regions with a different cross-sectional area (\mathbf{A}). Rank the V_{out} values for the three situations.

 $V_{in} = 48 \text{ cm/s}$

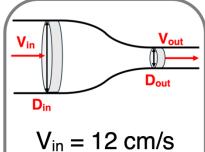
 $D_{in} = 0.020 \text{ m}$


 $D_{out} = 0.080 \text{ m}$

 $V_{in} = 6 \text{ cm/s}$

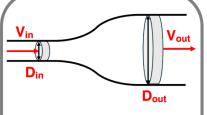
 $D_{in} = 0.100 \text{ m}$

 $D_{out} = 0.050 \text{ m}$


 $V_{in} = 32 \text{ cm/s}$

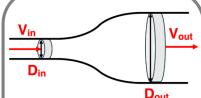
 $D_{in} = 0.060 \text{ m}$

 $D_{out} = 0.120 \text{ m}$


Question Group 8 Question 29

Consider the three situations in which fluid in a pipe flows between regions with different diameters (**D**). Rank the V_{out} values for the three situations.

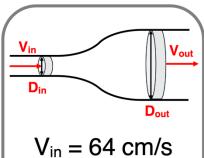
 $D_{in} = 0.240 \text{ m}$


 $D_{out} = 0.120 \text{ m}$

 $V_{in} = 64 \text{ cm/s}$

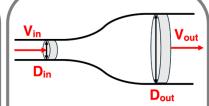
 $D_{in} = 0.050 \ m$

 $D_{out} = 0.100 \text{ m}$


 $V_{in} = 80 \text{ cm/s}$

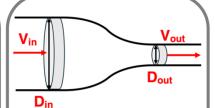
 $D_{in} = 0.060 \ m$

 $D_{out} = 0.120 \text{ m}$


Question 30

Consider the three situations in which fluid in a pipe flows between regions with different diameters (**D**). Rank the V_{out} values for the three situations.

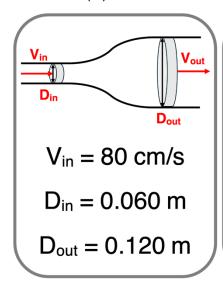
 $D_{in} = 0.050 \text{ m}$

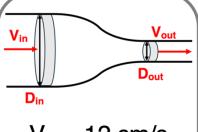

 $D_{out} = 0.100 \text{ m}$

 $V_{in} = 80 \text{ cm/s}$

 $D_{in} = 0.060 \text{ m}$

 $D_{out} = 0.120 \text{ m}$

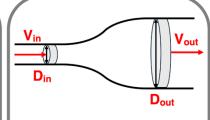



 $V_{in} = 12 \text{ cm/s}$

 $D_{in} = 0.240 \text{ m}$

 $D_{out} = 0.120 \ m$

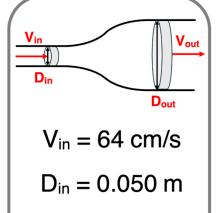
Consider the three situations in which fluid in a pipe flows between regions with different diameters (\mathbf{D}). Rank the V_{out} values for the three situations.



 $V_{in} = 12 \text{ cm/s}$

 $D_{in} = 0.240 \text{ m}$

 $D_{out} = 0.120 \text{ m}$

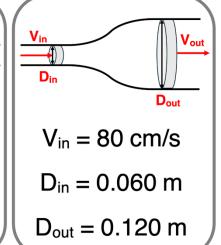

 $V_{in} = 64 \text{ cm/s}$

 $D_{in} = 0.050 \; m$

 $D_{out} = 0.100 \text{ m}$

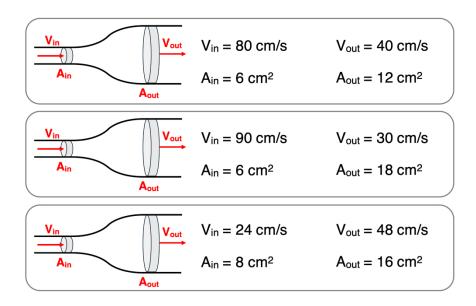
Question 32

Consider the three situations in which fluid in a pipe flows between regions with different diameters (\mathbf{D}). Rank the V_{out} values for the three situations.

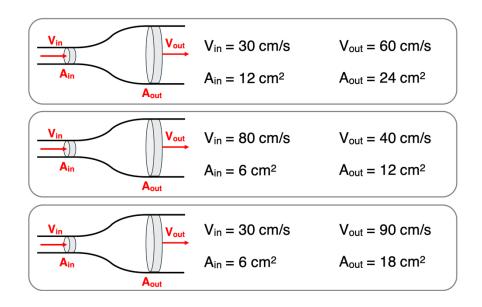

 $D_{out} = 0.100 \text{ m}$

V_{in} = 12 CIII/S

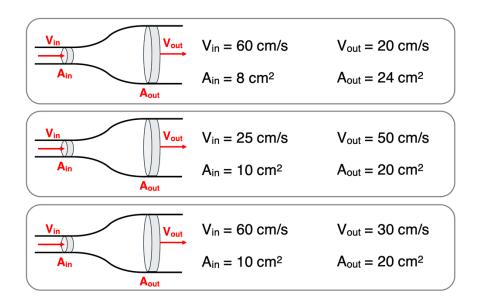
 $D_{in} = 0.240 \text{ m}$


 $D_{out} = 0.120 \text{ m}$

Activity 3: Law Breakers Question Group 9

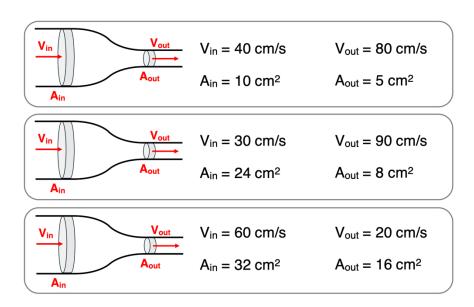

Question 33

Fluid in a pipe flows from a narrow to a wide section. The cross-sectional areas (A) and flow velocities (V) are listed. Identify all situations that violate the law of conservation of mass.

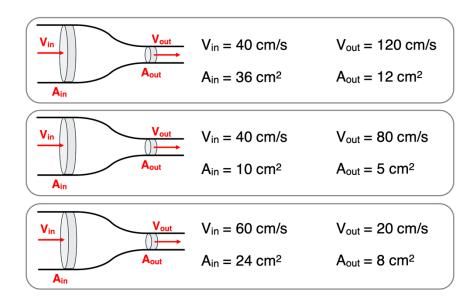


Question 34

Fluid in a pipe flows from a narrow to a wide section. The cross-sectional areas (A) and flow velocities (V) are listed. Identify all situations that violate the law of conservation of mass.

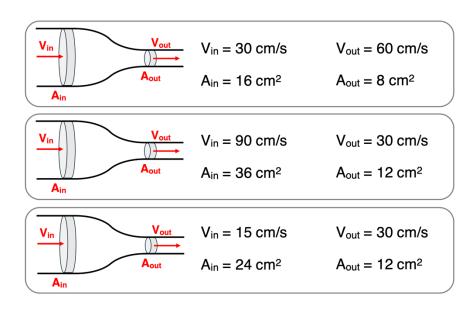


Fluid in a pipe flows from a narrow to a wide section. The cross-sectional areas (A) and flow velocities (V) are listed. Identify all situations that violate the law of conservation of mass.

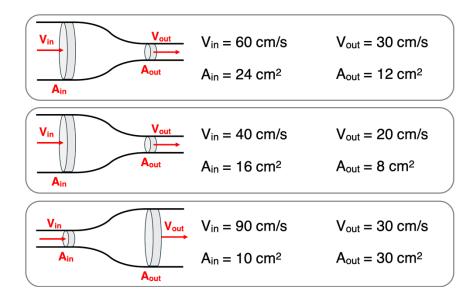


Question Group 10 Question 36

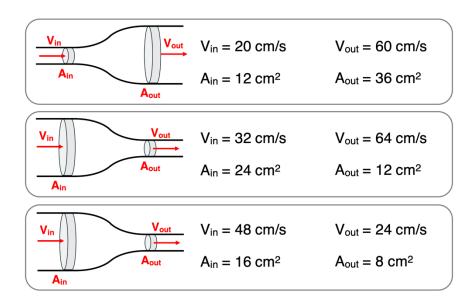
Fluid in a pipe flows from a wide to a narrow section. The cross-sectional areas (A) and flow velocities (V) are listed. Identify all situations that violate the law of conservation of mass.



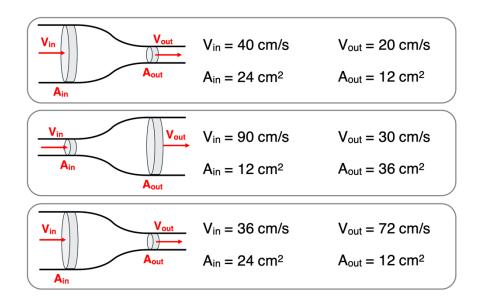
Fluid in a pipe flows from a wide to a narrow section. The cross-sectional areas (A) and flow velocities (V) are listed. Identify all situations that violate the law of conservation of mass.


Question 38

Fluid in a pipe flows from a wide to a narrow section. The cross-sectional areas (A) and flow velocities (V) are listed. Identify all situations that violate the law of conservation of mass.

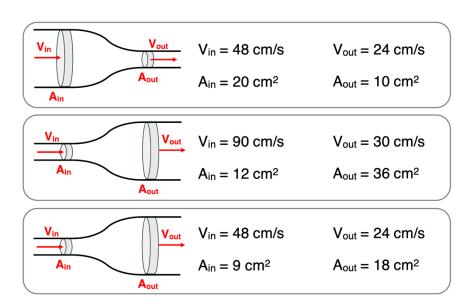

Question Group 11 Question 39

Fluid in a pipe flows between two sections with different cross-sectional areas. The areas (A) and flow velocities (V) are listed. Identify all situations that violate the law of conservation of mass.

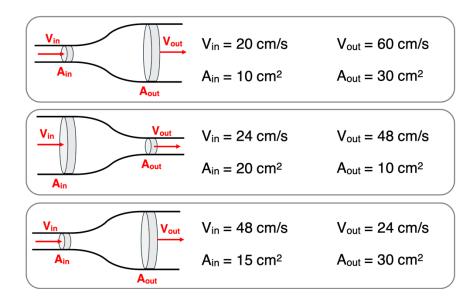


Question 40

Fluid in a pipe flows between two sections with different cross-sectional areas. The areas (A) and flow velocities (V) are listed. Identify all situations that violate the law of conservation of mass.

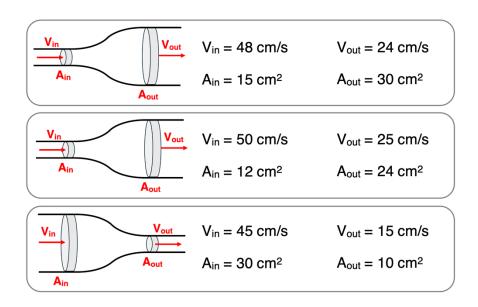


Fluid in a pipe flows between two sections with different cross-sectional areas. The areas (A) and flow velocities (V) are listed. Identify all situations that violate the law of conservation of mass.



Question Group 12 Question 42

Fluid in a pipe flows between two sections with different cross-sectional areas. The areas (A) and flow velocities (V) are listed. Identify all situations that violate the law of conservation of mass.



Fluid in a pipe flows between two sections with different cross-sectional areas. The areas (A) and flow velocities (V) are listed. Identify all situations that violate the law of conservation of mass.

Question 44

Fluid in a pipe flows between two sections with different cross-sectional areas. The areas (A) and flow velocities (V) are listed. Identify all situations that violate the law of conservation of mass.

