Nobody Likes Leftovers

Activity 1: The Perfect Match Question Group 1 Question 1 Consider the reaction: $N_2 + 3 H_2 \rightarrow 2 NH_3$

	Moles N ₂	+	Moles H ₂	\rightarrow	Moles NH ₃
1	2.00				
2			9.00		
3	5.00				
4					12.0
5	8.54				
6			29.2		

Consider the reaction: N₂ + 3 H₂ \rightarrow 2 NH₃

	Moles N ₂	+	Moles H ₂	\rightarrow	Moles NH ₃
1	1.50				
2			6.00		
3	6.00				
4					14.0
5	9.21				
6			32.6		

Consider the reaction: N₂ + 3 H₂ \rightarrow 2 NH₃

	Moles N ₂	+	Moles H ₂	\rightarrow	Moles NH ₃
1	3.00				
2			12.00		
3	6.00				
4					18.0
5	9.20				
6			38.6		

Consider the reaction: N₂ + 3 H₂ \rightarrow 2 NH₃

	Moles N ₂	+	Moles H ₂	\rightarrow	Moles NH ₃
1	4.00				
2			15.00		
3	8.00				
4					18.0
5	9.62				
6			41.6		

Activity 2: Moles on ICE Question Group 2 Question 5

Consider the following reaction: N₂ + 3 H₂ \rightarrow

2 NH₃

The **ICE Table** shows the Initial # of Moles of the two reactants and one product. Use coefficients to determine the **C**hange in the # of Moles and the **E**nding # of Moles of the two reactants and one product.

- ICE means ...
- I = Initial Amount
- **C** = **C**hange (reacted/produced)
- $\mathbf{E} = \mathbf{E}$ nding or Final Amount

	Moles N ₂	+	Moles H ₂	\rightarrow	Moles NH ₃
I	4.00		9.00		0.00
С	-		-		+
Ε					

Question 6

Consider the following reaction: N₂ + 3 H₂ \rightarrow 2 NH₃

- ICE means ...
- I = Initial Amount
- **C** = **C**hange (reacted/produced)
- **E** = **E**nding or Final Amount

	Moles N ₂	÷	Moles H ₂	\rightarrow	Moles NH ₃
	3.00		10.00		0.00
С	-		-		+
Ε					

Consider the following reaction: N₂ + 3 H₂ \rightarrow 2 NH₃

The **ICE Table** shows the Initial # of Moles of the two reactants and one product. Use coefficients to determine the **C**hange in the # of Moles and the **E**nding # of Moles of the two reactants and one product.

ICE means ...

- I = Initial Amount
- **C** = **C**hange (reacted/produced)

 $\mathbf{E} = \mathbf{E}$ nding or Final Amount

	Moles N ₂	+	Moles H ₂	\rightarrow	Moles NH ₃
	5.00		12.00		0.00
С	-		-		+
Ε					

Question 8

Consider the following reaction: N₂ + 3 H₂ \rightarrow 2 NH₃

- ICE means ...
- I = Initial Amount
- **C** = **C**hange (reacted/produced)
- **E** = **E**nding or Final Amount

	Moles N ₂	+	Moles H ₂	\rightarrow	Moles NH ₃
	5.00		18.00		0.00
С	-		-		+
Ε					

Question Group 3 Question 9 Consider the following reaction: $2 H_2 + O_2 \rightarrow 2 H_2O$

The **ICE Table** shows the Initial # of Moles of the two reactants and one product. Use coefficients to determine the Change in the # of Moles and the Ending # of Moles of the two reactants and one product.

ICE means ...

I = Initial Amount

C = **C**hange (reacted/produced)

E = **E**nding or Final Amount

	Moles H ₂	+	Moles O ₂	\rightarrow	Moles H ₂ O
	6.00		4.00		0.00
С	-		-		+
Ε					

Question 10

Consider the following reaction: $2 H_2 + O_2 \rightarrow 2 H_2O$

- ICE means ...
- I = Initial Amount
- **C** = **C**hange (reacted/produced)
- **E** = **E**nding or Final Amount

	Moles H ₂	+	Moles O ₂	\rightarrow	Moles H ₂ O
	8.00		3.00		0.00
С	-		-		+
Ε					

Consider the following reaction: 2 H₂ + O₂ \rightarrow 2 H₂O

The **ICE Table** shows the Initial # of Moles of the two reactants and one product. Use coefficients to determine the **C**hange in the # of Moles and the **E**nding # of Moles of the two reactants and one product.

- I = Initial Amount
- **C** = **C**hange (reacted/produced)
- $\mathbf{E} = \mathbf{E}$ nding or Final Amount

	Moles H ₂	+	Moles O ₂	\rightarrow	Moles H ₂ O
	5.00		2.00		0.00
С	-		-		+
Ε					

Question 12

Consider the following reaction: 2 H₂ + O₂ \rightarrow 2 H₂O

- ICE means ...
- I = Initial Amount
- **C** = **C**hange (reacted/produced)
- **E** = **E**nding or Final Amount

	Moles H ₂	+	Moles O ₂	\rightarrow	Moles H ₂ O
	8.00		5.00		0.00
С	-		-		+
Ε					

Question Group 4 Question 13 Consider the following reaction: 4 No.

Consider the following reaction: 4 Na + $O_2 \rightarrow 2 Na_2O$

The **ICE Table** shows the Initial # of Moles of the two reactants and one product. Use coefficients to determine the **C**hange in the # of Moles and the **E**nding # of Moles of the two reactants and one product.

ICE means ...

I = Initial Amount

C = **C**hange (reacted/produced)

E = **E**nding or Final Amount

	Moles Na	+	Moles O ₂	\rightarrow	Moles Na ₂ O
I	12.00		4.00		0.00
С	-		-		+
Ε					

Question 14

Consider the following reaction: 4 Na + $O_2 \rightarrow 2 Na_2O$

- ICE means ...
- I = Initial Amount
- **C** = **C**hange (reacted/produced)
- **E** = **E**nding or Final Amount

	Moles Na	+	Moles O ₂	\rightarrow	Moles Na ₂ O
	20.00		4.00		0.00
С	-		-		+
Ε					

Consider the following reaction: 4 Na + $O_2 \rightarrow 2 Na_2O$

The **ICE Table** shows the Initial # of Moles of the two reactants and one product. Use coefficients to determine the **C**hange in the # of Moles and the **E**nding # of Moles of the two reactants and one product.

- I = Initial Amount
- **C** = **C**hange (reacted/produced)
- $\mathbf{E} = \mathbf{E}$ nding or Final Amount

	Moles Na	+	Moles O ₂	\rightarrow	Moles Na ₂ O
I	16.00		3.00		0.00
С	-		-		+
Ε					

Question 16

Consider the following reaction: 4 Na + $O_2 \rightarrow$

2 Na₂O

- ICE means ...
- I = Initial Amount
- **C** = **C**hange (reacted/produced)
- **E** = **E**nding or Final Amount

	Moles Na	+	Moles O ₂	\rightarrow	Moles Na ₂ O
	16.00		5.00		0.00
С	-		-		+
Ε					

Question Group 5 Question 17 Consider the following reaction: 2 Ca + $O_2 \rightarrow 2$ CaO

The ICE Table shows the Initial # of Moles of the two reactants and one product. Use coefficients to determine the Change in the # of Moles and the Ending # of Moles of the two reactants and one product.

ICE means ...

= Initial Amount

C = **C**hange (reacted/produced)

E = Ending or Final Amount

	Moles Ca	+	Moles O ₂	\rightarrow	Moles CaO
I	13.00		7.00		0.00
С	-		-		+
Ε					

Question 18

Consider the following reaction: 2 Ca + $O_2 \rightarrow 2$ CaO

- ICE means ...
- = Initial Amount
- **C** = **C**hange (reacted/produced)
- **E** = Ending or Final Amount

	Moles Ca	+	Moles O ₂	\rightarrow	Moles CaO
I	17.00		8.00		0.00
С	-		-		+
Ε					

Consider the following reaction: 2 Ca + $O_2 \rightarrow 2$ CaO

The **ICE Table** shows the Initial # of Moles of the two reactants and one product. Use coefficients to determine the **C**hange in the # of Moles and the **E**nding # of Moles of the two reactants and one product.

ICE means ...

I = Initial Amount

C = **C**hange (reacted/produced)

E = **E**nding or Final Amount

	Moles Ca	+	Moles O ₂	\rightarrow	Moles CaO
	21.00		12.00		0.00
С	-		-		+
Ε					

Question 20

Consider the following reaction: 2 Ca + $O_2 \rightarrow 2$ CaO

- ICE means ...
- I = Initial Amount
- **C** = **C**hange (reacted/produced)
- E = Ending or Final Amount

	Moles Ca	+	Moles O ₂	\rightarrow	Moles CaO
I	17.00		10.00		0.00
С	-		-		+
Ε					

Activity 3: Mass on ICE Question Group 6 Question 21 Consider the following reaction: $N_2 + 3 H_2 \rightarrow$

The **ICE Table** shows the Initial mass (in grams) of two reactants and product. Determine the **C**hange in mass (in grams) and the **E**nding mass (in grams) of reactants and product. Identify the limiting reactant. ICE means ...

2 NH₃

- l = Initial Amount
 - **C** = **C**hange (reacted/produced)
 - **E** = **E**nding or Final Amount

	Mass N ₂	÷	Mass H ₂	\rightarrow	Mass NH ₃
	28.00		10.00		0.00
С	-		-		+
Ε					

Question 22

Consider the following reaction: N₂ + 3 H₂ \rightarrow 2 NH₃

- ICE means ...
- I = Initial Amount
- **C** = **C**hange (reacted/produced)
- $\mathbf{E} = \mathbf{E}$ nding or Final Amount

	Mass N ₂	÷	Mass H ₂	\rightarrow	Mass NH ₃
	14.00		4.00		0.00
С	-		-		+
Ε					

Consider the following reaction: $N_2 + 3 H_2 \rightarrow 2 NH_3$

The **ICE Table** shows the **I**nitial mass (in grams) of two reactants and product. Determine the Change in mass (in grams) and the Ending mass (in grams) of reactants and product. Identify the limiting reactant.

ICE means ...

= Initial Amount

C = **C**hange (reacted/produced)

E = Ending or Final Amount

	Mass N ₂	+	Mass H ₂	\rightarrow	Mass NH ₃
	40.00		6.00		0.00
С	-		-		+
Ε					

Question 24

Consider the following reaction: $N_2 + 3 H_2 \rightarrow 2 NH_3$

- ICE means ...
- = Initial Amount
- **C** = **C**hange (reacted/produced)
- **E** = Ending or Final Amount

	Mass N ₂	÷	Mass H ₂	\rightarrow	Mass NH ₃
	60.00		12.00		0.00
С	-		-		+
Ε					

Question Group 7 Question 25 Consider the following reaction: $2 H_2 + O_2 \rightarrow 2 H_2O$

The **ICE Table** shows the Initial mass (in grams) of two reactants and product. Determine the **C**hange in mass (in grams) and the **E**nding mass (in grams) of reactants and product. Identify the limiting reactant. ICE means ...

I = Initial Amount

C = **C**hange (reacted/produced)

E = **E**nding or Final Amount

	Mass H ₂	÷	Mass O ₂	\rightarrow	Mass H ₂ O
	8.00		80.00		0.00
С	-		-		+
Ε					

Question 26

Consider the following reaction: $2 H_2 + O_2 \rightarrow 2 H_2O$

- ICE means ...
- I = Initial Amount
- **C** = **C**hange (reacted/produced)
- **E** = **E**nding or Final Amount

	Mass H ₂	÷	Mass O ₂	\rightarrow	Mass H ₂ O
	8.00		48.00		0.00
С	-		-		+
Ε					

Consider the following reaction: 2 H₂ + O₂ \rightarrow 2 H₂O

The **ICE Table** shows the Initial mass (in grams) of two reactants and product. Determine the **C**hange in mass (in grams) and the **E**nding mass (in grams) of reactants and product. Identify the limiting reactant. ICE means ...

I = Initial Amount

C = **C**hange (reacted/produced)

 $\mathbf{E} = \mathbf{E}$ nding or Final Amount

	Mass H ₂	+	Mass O ₂	\rightarrow	Mass H ₂ O
	2.00		20.00		0.00
С	-		-		+
Ε					

Question 28

Consider the following reaction: 2 H_2 + O_2 \rightarrow 2 H_2O

- ICE means ...
- I = Initial Amount
- **C** = **C**hange (reacted/produced)
- **E** = **E**nding or Final Amount

	Mass H ₂	+	Mass O ₂	\rightarrow	Mass H ₂ O
	3.00		16.00		0.00
С	-		-		+
Ε					

Question Group 8 Question 29

Consider the following reaction: 4 Na + $O_2 \rightarrow$

The **ICE Table** shows the Initial mass (in grams) of two reactants and product. Determine the **C**hange in mass (in grams) and the **E**nding mass (in grams) of reactants and product. Identify the limiting reactant. ICE means ...

I = Initial Amount

C = **C**hange (reacted/produced)

E = **E**nding or Final Amount

	Mass Na	+	Mass O ₂	\rightarrow	Mass Na ₂ O
	46.00		20.00		0.00
С	-		-		+
Е					

Question 30

Consider the following reaction: 4 Na + $O_2 \rightarrow 2 Na_2O$

The **ICE Table** shows the Initial mass (in grams) of two reactants and product. Determine the **C**hange in mass (in grams) and the **E**nding mass (in grams) of reactants and product. Identify the limiting reactant.

- ICE means ...
- I = Initial Amount
- **C** = **C**hange (reacted/produced)
- **E** = **E**nding or Final Amount

	Mass Na	+	Mass O ₂	\rightarrow	Mass Na ₂ O
	54.00		16.00		0.00
С	-		-		+
Ε					

 \rightarrow 2 Na₂O

Consider the following reaction: 4 Na + $O_2 \rightarrow 2 Na_2O$

The **ICE Table** shows the Initial mass (in grams) of two reactants and product. Determine the **C**hange in mass (in grams) and the **E**nding mass (in grams) of reactants and product. Identify the limiting reactant. ICE means ...

I = Initial Amount

C = **C**hange (reacted/produced)

E = **E**nding or Final Amount

	Mass Na	+	Mass O ₂	\rightarrow	Mass Na ₂ O
	100.00		32.00		0.00
С	-		-		+
Ε					

Question 32

Consider the following reaction: 4 Na + $O_2 \rightarrow 2 Na_2O$

- ICE means ...
- I = Initial Amount
- **C** = **C**hange (reacted/produced)
- **E** = **E**nding or Final Amount

	Mass Na	+	Mass O ₂	\rightarrow	Mass Na ₂ O
	92.00		40.00		0.00
С	-		-		+
Ε					

Question Group 9 Question 33 Consider the following reaction: 2 Ca + $O_2 \rightarrow 2$ CaO

The ICE Table shows the Initial mass (in grams) of two reactants and product. Determine the Change in mass (in grams) and the Ending mass (in grams) of reactants and product. Identify the limiting reactant.

ICE means ...

= Initial Amount

C = **C**hange (reacted/produced)

E = Ending or Final Amount

	Mass Ca	÷	Mass O ₂	\rightarrow	Mass CaO
	80.00		40.00		0.00
С	-		-		+
Ε					

Question 34

Consider the following reaction: $2 \text{ Ca} + \text{O}_2 \rightarrow$ 2 CaO

- ICE means ...
- = Initial Amount
- **C** = **C**hange (reacted/produced)
- **E** = Ending or Final Amount

	Mass Ca	+	Mass O ₂	\rightarrow	Mass CaO
I	90.00		32.00		0.00
С	-		-		+
Ε					

Consider the following reaction: 2 Ca + $O_2 \rightarrow 2$ CaO

The **ICE Table** shows the Initial mass (in grams) of two reactants and product. Determine the **C**hange in mass (in grams) and the **E**nding mass (in grams) of reactants and product. Identify the limiting reactant.

ICE means ...

I = Initial Amount

C = **C**hange (reacted/produced)

E = **E**nding or Final Amount

	Mass Ca	+	Mass O ₂	\rightarrow	Mass CaO
	40.00		20.00		0.00
С	-		-		+
Ε					

Question 36

Consider the following reaction: 2 Ca + $O_2 \rightarrow 2$ CaO

- ICE means ...
- I = Initial Amount
- **C** = **C**hange (reacted/produced)
- **E** = **E**nding or Final Amount

	Mass Ca	+	Mass O ₂	\rightarrow	Mass CaO
	50.00		16.00		0.00
С	-		-		+
Ε					