Elemental Measures (a.k.a., Stoikheion-metry)

Apprentice Difficulty Level

Question Group 1

Question 1 Atomic Scale Analysis:	
Consider the reaction $2 H_2$ + elements H and O on both side	$O_2 \rightarrow 2 H_2 O$. Count the number of atoms of the es of the equation.
Reactant Side:	Product Side:
# atoms of H:	# atoms of H:
# atoms of O:	# atoms of O:
number of atoms does not cha b. Atoms of one element are cl of atoms changes during the re	nanged into atoms of another element but the total nge. nanged into atoms of another element; the total number
	ightarrow 2 H ₂ O, the coefficients indicate the number of oduct involved in the reaction. Calculate the grams of the
Reactant Side:	Product Side:
Mass (g) of H:	Mass (g) of H:
Mass (g) of O:	Mass (g) of O:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Atomic Scale Analysis:

Consider the reaction $N_2+3H_2\to2$ NH $_3$. Count the number of atoms of the elements **N** and **H** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of N:	# atoms of N:
# atoms of H:	# atoms of H:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $N_2 + 3 H_2 \rightarrow 2 NH_3$, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **N** and **H** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of N:	Mass (g) of N:
Mass (g) of H:	Mass (g) of H:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Atomic Scale Analysis:

Consider the reaction 3 Ti + 2 N₂ \rightarrow Ti₃N₄. Count the number of atoms of the elements **Ti** and **N** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of Ti:	# atoms of HTi
# atoms of N:	# atoms of N:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction 3 Ti + 2 N₂ \rightarrow Ti₃N₄, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **Ti** and **N** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of Ti:	Mass (g) of Ti:
Mass (g) of N:	Mass (g) of N:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Question Group 2 Question 4

Atomic Scale Analysis:

Consider the reaction 2 Al + 3 Cl₂ \rightarrow 2 AlCl₃. Count the number of atoms of the elements **Al** and **Cl** on both sides of the equation.

of AI:
of CI:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction 2 Al + 3 Cl₂ \rightarrow 2 AlCl₃, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **Al** and **Cl** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of Al:	Mass (g) of Al:
Mass (g) of CI:	Mass (g) of CI:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Atomic Scale Analysis:

Consider the reaction 2 Al + 3 Br₂ \rightarrow 2 AlBr₃. Count the number of atoms of the elements **Al** and **Br** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of Al:	# atoms of AI:
# atoms of Br:	# atoms of Br:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction 2 Al + 3 Br₂ \rightarrow 2 AlBr₃, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **Al** and **Br** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of Al:	Mass (g) of Al:
Mass (g) of Br:	Mass (g) of Br:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Atomic Scale Analysis:

Consider the reaction 2 Al + 3 I₂ \rightarrow 2 AlI₃. Count the number of atoms of the elements **Al** and **I** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of AI:	# atoms of Al:
# atoms of I:	# atoms of I:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction 2 Al + 3 $I_2 \rightarrow$ 2 AlI₃, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **Al** and **I** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of Al:	Mass (g) of AI:
Mass (g) of I:	Mass (g) of I:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Question Group 3 Question 7

Atomic Scale Analysis:

Consider the reaction 4 Li + O₂ \rightarrow 2 Li₂O . Count the number of atoms of the elements **Li** and **O** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of Li:	# atoms of Li:
# atoms of O:	# atoms of O:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction 4 Li + O₂ \rightarrow 2 Li₂O, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **Li** and **O** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of Li:	Mass (g) of Li:
Mass (g) of O:	Mass (q) of O:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Atomic Scale Analysis:

Consider the reaction 4 K $\,+\,$ O_2 $\,\to\,$ 2 K_2O . Count the number of atoms of the elements **K** and **O** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of K:	# atoms of K:
# atoms of O:	# atoms of O:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction 4 K + $O_2 \rightarrow 2$ K_2O , the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **K** and **O** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of K:	Mass (g) of K:
Mass (g) of O:	Mass (g) of O:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Atomic Scale Analysis:

Consider the reaction 4 Na $\,+\,$ O₂ $\,\to\,$ 2 Na₂O . Count the number of atoms of the elements Na and O on both sides of the equation.

Reactant Side:	Product Side:
# atoms of Na:	# atoms of Na:
# atoms of O:	# atoms of O:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction 4 Na + $O_2 \rightarrow 2$ Na₂O, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **Na** and **O** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of Na:	Mass (g) of Na:
Mass (g) of O:	Mass (q) of O:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Master Difficulty Level Question Group 4 Question 10

Atomic Scale Analysis:

Consider the reaction Li₂O + H₂O \rightarrow 2 LiOH. Count the number of atoms of the elements **Li**, **O**, and **H** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of Li:	# atoms of Li:
# atoms of O:	# atoms of O:
# atoms of H:	# atoms of H:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $Li_2O + H_2O \rightarrow 2$ LiOH, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **Li**, **O**, and **H** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of Li:	Mass (g) of Li:
Mass (g) of O:	Mass (g) of O:
Mass (g) of H:	Mass (g) of H:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Atomic Scale Analysis:

Consider the reaction Na₂O + H₂O \rightarrow 2 NaOH. Count the number of atoms of the elements **Na**, **O**, and **H** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of Na:	# atoms of Na:
# atoms of O:	# atoms of O:
# atoms of H:	# atoms of H:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $Na_2O + H_2O \rightarrow 2$ NaOH, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements \mathbf{Na} , \mathbf{O} , and \mathbf{H} on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of Na:	Mass (g) of Na:
Mass (g) of O:	Mass (g) of O:
Mass (g) of H:	Mass (g) of H:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Atomic	Scale	Analy	ysis:
---------------	-------	-------	-------

Consider the reaction $K_2O + H_2O \rightarrow 2$ KOH. Count the number of atoms of the elements **K**, **O**, and **H** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of K:	# atoms of K:
# atoms of O:	# atoms of O:
# atoms of H:	# atoms of H:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $K_2O + H_2O \rightarrow 2$ KOH, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **K**, **O**, and **H** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of K:	Mass (g) of K:
Mass (g) of O:	Mass (g) of O:
Mass (g) of H:	Mass (g) of H:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Question Group 5 Question 13

Atomic Scale Analysis:

Consider the reaction $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$. Count the number of atoms of the elements **C**, **H**, and **O** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of C:	# atoms of C:
# atoms of H:	# atoms of H:
# atoms of O:	# atoms of O:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $CH_4+2\,O_2\to CO_2+2\,H_2O$, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements $\bf C$, $\bf H$, and $\bf O$ on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of C:	Mass (g) of C:
Mass (g) of H:	Mass (g) of H:
Mass (g) of O:	Mass (g) of O:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Atomic Scale Analysis:

Consider the reaction $2 C_2H_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$. Count the number of atoms of the elements **C**, **H**, and **O** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of C:	# atoms of C:
# atoms of H:	# atoms of H:
# atoms of O:	# atoms of O:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $2 C_2H_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements \mathbf{C} , \mathbf{H} , and \mathbf{O} on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of C:	Mass (g) of C:
Mass (g) of H:	Mass (g) of H:
Mass (q) of O:	Mass (q) of O:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Atomic Scale Analysis:

Consider the reaction 2 CH₃OH + 3 O₂ \rightarrow 2 CO₂ + 4 H₂O. Count the number of atoms of the elements **C**, **H**, and **O** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of C:	# atoms of C:
# atoms of H:	# atoms of H:
# atoms of O:	# atoms of O:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $2 \text{ CH}_3\text{OH} + 3 \text{ O}_2 \rightarrow 2 \text{ CO}_2 + 4 \text{ H}_2\text{O}$, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements \mathbf{C} , \mathbf{H} , and \mathbf{O} on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of C:	Mass (g) of C:
Mass (g) of H:	Mass (g) of H:
Mass (q) of O:	Mass (g) of O:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Question Group 6 Question 16

Atomic Scale Analysis:

Consider the reaction $2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 3 \text{ O}_2$. Count the number of atoms of the elements **K**, **Cl**, and **O** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of K:	# atoms of K:
# atoms of CI:	# atoms of CI:
# atoms of O:	# atoms of O:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 3 \text{ O}_2$, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **K**, **Cl**, and **O** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of K:	Mass (g) of K:
Mass (g) of CI:	Mass (g) of CI:
Mass (g) of O:	Mass (g) of O:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Atomic Scale Analysis:

Consider the reaction $2 \text{ Al}(OH)_3 \rightarrow \text{Al}_2O_3 + 3 \text{ H}_2O$. Count the number of atoms of the elements **Al**, **O**, and **H** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of Al:	# atoms of AI:
# atoms of O:	# atoms of O:
# atoms of H:	# atoms of H:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $2 \text{ Al}(OH)_3 \rightarrow \text{Al}_2O_3 + 3 \text{ H}_2O$, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **Al**, **O**, and **H** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of AI:	Mass (g) of Al:
Mass (g) of O:	Mass (g) of O:
Mass (g) of H:	Mass (g) of H:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Atomic Scale Analysis:

Consider the reaction $2 \text{ Fe}(OH)_3 \rightarrow \text{Fe}_2O_3 + 3 \text{ H}_2O$. Count the number of atoms of the elements **Fe**, **O**, and **H** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of Fe:	# atoms of Fe:
# atoms of O:	# atoms of O:
# atoms of H:	# atoms of H:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $2 \text{ Fe}(OH)_3 \rightarrow \text{Fe}_2O_3 + 3 \text{ H}_2O$, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **Fe**, **O**, and **H** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of Fe:	Mass (g) of Fe:
Mass (g) of O:	Mass (g) of O:
Mass (g) of H:	Mass (g) of H:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Wizard Difficulty Level Question Group 7 Question 19

Consider the reaction $AI(OH)_3 + 3 HCI \rightarrow AICI_3 + 3 H_2O$. Count the number of atoms of the elements **AI**, **O**, **H**, and **CI** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of Al:	# atoms of AI:
# atoms of O:	# atoms of O:
# atoms of H:	# atoms of H:
# atoms of CI:	# atoms of CI:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $AI(OH)_3 + 3 HCI \rightarrow AICI_3 + 3 H_2O$, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **AI**, **O**, **H**, and **CI** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of Al:	Mass (g) of Al:
Mass (g) of O:	Mass (g) of O:
Mass (g) of H:	Mass (g) of H:
Mass (g) of CI:	Mass (g) of CI:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Consider the reaction $Fe(OH)_3 + 3 HCI \rightarrow FeCl_3 + 3 H_2O$. Count the number of atoms of the elements **Fe**, **O**, **H**, and **CI** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of Fe:	# atoms of Fe:
# atoms of O:	# atoms of O:
# atoms of H:	# atoms of H:
# atoms of CI:	# atoms of CI:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $Fe(OH)_3 + 3 HCI \rightarrow FeCI_3 + 3 H_2O$, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **Fe**, **O**, **H**, and **CI** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of Fe:	Mass (g) of Fe:
Mass (g) of O:	Mass (g) of O:
Mass (g) of H:	Mass (g) of H:
Mass (g) of CI:	Mass (g) of CI:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Consider the reaction $Cr(OH)_3 + 3 HCI \rightarrow CrCl_3 + 3 H_2O$. Count the number of atoms of the elements Cr, O, H, and CI on both sides of the equation.

Reactant Side:	Product Side:
# atoms of Cr:	# atoms of Cr:
# atoms of O:	# atoms of O:
# atoms of H:	# atoms of H:
# atoms of CI:	# atoms of CI:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $Cr(OH)_3 + 3 HCI \rightarrow CrCl_3 + 3 H_2O$, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **Cr**, **O**, **H**, and **CI** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of Cr:	Mass (g) of Cr:
Mass (g) of O:	Mass (g) of O:
Mass (g) of H:	Mass (g) of H:
Mass (g) of CI:	Mass (g) of Cl:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Question Group 8 Question 22

Consider the reaction $Mg(OH)_2 + CO_2 \rightarrow MgCO_3 + H_2O$. Count the number of atoms of the elements Mg, O, H, and C on both sides of the equation.

Reactant Side:	Product Side:
# atoms of Mg:	# atoms of Mg:
# atoms of O:	# atoms of O:
# atoms of H:	# atoms of H:
# atoms of C:	# atoms of C:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $Mg(OH)_2 + CO_2 \rightarrow MgCO_3 + H_2O$, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements Mg, O, H, and C on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of Mg:	Mass (g) of Mg:
Mass (g) of O:	Mass (g) of O:
Mass (g) of H:	Mass (g) of H:
Mass (g) of C:	Mass (g) of C:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Consider the reaction $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$. Count the number of atoms of the elements **Ca**, **O**, **H**, and **C** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of Ca:	# atoms of Ca:
# atoms of O:	# atoms of O:
# atoms of H:	# atoms of H:
# atoms of C:	# atoms of C:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements Ca, O, H, and C on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of Ca:	Mass (g) of Ca:
Mass (g) of O:	Mass (g) of O:
Mass (g) of H:	Mass (g) of H:
Mass (g) of C:	Mass (g) of C:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Consider the reaction $Ba(OH)_2 + CO_2 \rightarrow BaCO_3 + H_2O$. Count the number of atoms of the elements **Ba**, **O**, **H**, and **C** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of Ba:	# atoms of Ba:
# atoms of O:	# atoms of O:
# atoms of H:	# atoms of H:
# atoms of C:	# atoms of C:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $Ba(OH)_2 + CO_2 \rightarrow BaCO_3 + H_2O$, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **Ba**, **O**, **H**, and **C** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of Ba:	Mass (g) of Ba:
Mass (g) of O:	Mass (g) of O:
Mass (g) of H:	Mass (g) of H:
Mass (g) of C:	Mass (g) of C:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Question Group 9 Question 25

Consider the reaction 2 HCl + Mg(OH)₂ \rightarrow MgCl₂ + 2 H₂O. Count the number of atoms of the elements **H**, **Cl**, **Mg**, and **O** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of H:	# atoms of H:
# atoms of CI:	# atoms of CI:
# atoms of Mg:	# atoms of Mg:
# atoms of O:	# atoms of O:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $2 \, HCl + Mg(OH)_2 \rightarrow MgCl_2 + 2 \, H_2O$, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **H**, **CI**, **Mg**, and **O** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of H:	Mass (g) of H:
Mass (g) of CI:	Mass (g) of CI:
Mass (g) of Mg:	Mass (g) of Mg:
Mass (g) of O:	Mass (g) of O:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Consider the reaction $H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 H_2O$. Count the number of atoms of the elements **H**, **S**, **O**, and **Na** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of H:	# atoms of H:
# atoms of S:	# atoms of S:
# atoms of O:	# atoms of O:
# atoms of Na:	# atoms of Na:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 H_2O$, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **H**, **S**, **O**, and **Na** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of H:	Mass (g) of H:
Mass (g) of S:	Mass (g) of S:
Mass (g) of O:	Mass (g) of O:
Mass (g) of Na:	Mass (g) of Na:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.

Consider the reaction $H_3PO_4 + 3 NaOH \rightarrow Na_3PO_4 + 3 H_2O$. Count the number of atoms of the elements **H**, **P**, **O**, and **Na** on both sides of the equation.

Reactant Side:	Product Side:
# atoms of H:	# atoms of H:
# atoms of P:	# atoms of P:
# atoms of O:	# atoms of O:
# atoms of Na:	# atoms of Na:

Which statement is an accurate summary of this analysis?

- a. Atoms of one element are changed into atoms of another element but the total number of atoms does not change.
- b. Atoms of one element are changed into atoms of another element; the total number of atoms changes during the reaction.
- c. The number of atoms of each of the elements is conserved (does not change) during this reaction.

Macroscopic Scale Analysis:

For the reaction $H_3PO_4 + 3 NaOH \rightarrow Na_3PO_4 + 3 H_2O$, the coefficients indicate the number of moles of each reactant and product involved in the reaction. Calculate the grams of the elements **H**, **P**, **O**, and **Na** on both sides of the equation.

Reactant Side:	Product Side:
Mass (g) of H:	Mass (g) of H:
Mass (g) of P:	Mass (g) of P:
Mass (g) of O:	Mass (g) of O:
Mass (g) of Na:	Mass (g) of Na:

- a. The mass of one or more of the elements changes; but the total mass remains constant.
- b. The mass of one or more of the elements changes; the total mass also changes.
- c. The mass of each element is conserved (does not change) during this reaction.