Wavelength, Frequency, and Speed Lesson Notes

Learning Outcomes

- In what way are wavelength, frequency and speed mathematically related?
- How can the relationship be used?

The BIG Equation

In the time of 1 period (time to complete one full back-and-forth cycle), the wave travels a distance of 1 wavelength from the source.

$$
\text { speed }=\frac{d}{t} \quad \Rightarrow \quad \text { speed }=\frac{\lambda}{T}
$$

Period and frequency are reciprocals: $T=1 / f$. So by substitution:

$$
\text { speed }=\frac{\lambda}{1 / f} \longrightarrow \text { speed }=f \cdot \lambda
$$

In summary:

$$
\text { speed }=\text { frequency } \cdot \text { wavelength } \longrightarrow v=f \cdot \lambda
$$

The Wave Equation ... Three Ways

The wave quation can be used to solve for ...

Ocean waves are observed to reach the shore 15 times every minute. Their wavelength is 12 meter. What is the speed?

$$
\begin{gathered}
\mathrm{v}=(15 / 60 \mathrm{~Hz}) \cdot(12 \mathrm{~m}) \\
\mathbf{v}=3.0 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Frequency $(f) \Rightarrow f=v / \lambda$
Waves in a vibrating guitar string have a wavelength of 1.05 m . They travel at $420 \mathrm{~m} / \mathrm{s}$. What frequency is produced?

$$
\begin{gathered}
\mathrm{f}=(420 \mathrm{~m} / \mathrm{s}) /(1.05 \mathrm{~m}) \\
\mathrm{f}=400 \mathrm{~Hz}
\end{gathered}
$$

Wavelength $(\lambda) \longrightarrow \lambda=v / f$
Sound waves travel at $345 \mathrm{~m} / \mathrm{s}$. What is the wavelength of waves produced by the vibrations of a $256-\mathrm{Hz}$ tuning fork?

$$
\begin{gathered}
\lambda=(345 \mathrm{~m} / \mathrm{s}) /(256 \mathrm{~Hz}) \\
\lambda=1.35 \mathrm{~m}
\end{gathered}
$$

What Affects Wave Speed?

- Wave speed depends upon the properties of the medium.
- Changing frequency only changes the wavelength; it doesn't change the speed.
- Frequency and wavelength are inversely proportional.

Medium	Frequency	Wavelength	Speed
$\mathbf{Z n}, 1$-in. dia. coils	$\mathbf{2 . 2 ~ H z}$	$\mathbf{1 . 6} \mathbf{~ m}$	3.5
$\mathbf{Z n}$, 1-in. dia. coils	$\mathbf{4 . 4} \mathbf{~ H z}$	$\mathbf{0 . 8 0} \mathbf{~ m}$	3.5
$\mathbf{C u}$, 1-in. dia. coils	$\mathbf{2 . 1 ~ H z}$	$\mathbf{1 . 2 0} \mathbf{~ m}$	2.5
$\mathbf{C u}$, 1-in. dia. coils	$\mathbf{4 . 2 ~ H z}$	$\mathbf{0 . 6 0} \mathbf{~ m}$	2.5
$\mathbf{Z n}$, 3-in. dia. coils	$\mathbf{2 . 2 ~ H z}$	$\mathbf{1 . 8 2} \mathbf{~ m}$	4.0
$\mathbf{Z n}$, 3-in. dia. coils	$\mathbf{4 . 2 ~ H z}$	$\mathbf{0 . 9 5} \mathbf{~ m}$	4.0

Frequency Effects

- For different waves in the same medium:
"The factor by which the frequency is changed is the inverse of the factor by which the speed is changed."
- For the same medium (same speed), doubling the frequency will halve the wavelength.
- Speed (v) is the constant; frequency (f) and wavelength $(\boldsymbol{\lambda})$ are inversely related.

Double f
Halve λ
B

Example Problem - Rocking the Boat

Two boats - A and B - are anchored a horizontal distance of 18 meters apart. Incoming water waves force the boats to oscillate up and down, making one complete cycle every 10.0 seconds. When Boat A is at its peak, Boat B is at its low point and there is one crest between them. Determine the wavelength, frequency and speed.

"one complete cycle every 10.0 seconds"

