Solving Horizontally-Launched Projectile Problems Lesson Notes

What is a Horizontally-Launched Projectile?

Horizontally-launched projectiles are objects projected in a horizontal direction from an elevated position.

^a The initial vertical velocity of a horizontally-launched projectile is 0 m/s.

v_{oy} = 0 m/s

- ^a Projectiles have a constant horizontal velocity.
 a_x = 0 m/s/s
- ^a Projectiles accelerate vertically at 9.8 m/s/s, ↓.
 a_y = 9.8 m/s/s

Problem-Solving Tips and Strategies

Projectile problems must be solved using two sets of kinematic equations. Horizontal and vertical motion parameters must be kept separate from one another.

Horizontal: $d_x = v_{ox} \cdot t$

Vertical: $d_y = v_{oy} \cdot t - 4.9 \cdot t^2$ $v_{fy} = v_{oy} - 9.8 \cdot t$ $v_{fy}^2 = v_{oy}^2 - 19.6 \cdot d_y$ $d_y = [(v_{oy} + v_{fy})/2] \cdot t$

Strategy:

- 1. Read the problem carefully. Diagram it.
- 2. ID known values; relate to corresponding symbol.
- 3. ID the unknown value; use the variable symbol.
- 4. Select the appropriate equation to use.
- 5. Substitute known values; solve for unknown.

Use of an X-Y Table

An "X-Y Table" is a useful means of organizing the given information in a projectile problem. It helps keep x- and y- variable values separate.

Sample Problem: A

ball is thrown horizontally at 12.8 m/s from the top of a 17.9m high cliff. How far from the base of the cliff does it land?

X	Y
d _x = ???	d _y = -17.9 m
v _{ox} = 12.8 m/s	$v_{oy} = 0 \text{ m/s}$
$a_x = 0 \text{ m/s}^2$	$a_y = -9.8 \text{ m/s}^2$

Example 1

 $d_y = v_{oy} \cdot t - 4.9 \cdot t^2$ -1.42 = $\theta \cdot t - 4.9 \cdot t^2$

 $(-1.42/-4.9) = t^2$

A ball rolls off a 1.42-m high table with a speed of 2.63 m/s. How far from the base of the table will it land?

X	Y
d _x = ???	d _y = -1.42 m
v _{ox} = 2.63 m/s	$v_{oy} = 0 \text{ m/s}$
$a_x = 0 \text{ m/s}^2$	$a_y = -9.8 \text{ m/s}^2$

t = √(-1.42/-4.9) = 0.5383 ... s

$d_x = v_{ox} \cdot t$	
$d_x = (2.63) \cdot (0.63)$	0.5383)
d _x = 1.42 m	(1.41579 m)

Example 2

A student throws a book horizontally out a dorm window with a speed of 12.5 m/s. The book lands on the ground 31.8 m from the base of the building. How high is the window above the ground?

Example 3

A stone is thrown from the top of a 52.5-m high vertical cliff and lands in the water below at a location 43.8 m from the bottom of the cliff. Determine the velocity with which the stone is thrown.

Slide 6