Analytical Method of Vector Addition Lesson Notes

What is the Analytical Method?

Determining the resultant of two or more non-perpendicular vectors by adding all their x and y -components.

An Easy Problem	versus	A Difficult Problem
Adding Perpendicular Vectors		Adding Non-Perpendicular Vectors

Add the following vectors:
12 m, East
9 m, North
16 m , West
12 m , North
6 m , West
8 m , South

$$
\begin{aligned}
& \sum E-W=10 \mathrm{~m}, \text { West } \\
& \sum \mathrm{N}-\mathrm{S}=13 \mathrm{~m}, \text { North }
\end{aligned}
$$

Add the following vectors:
$15.0 \mathrm{~m}, 36.9^{\circ}$
20.0 m, 143.1°
$10.0 \mathrm{~m}, 233.1^{\circ}$
To add non-perpendicular vectors, you must first resolve them into x - and y-components. Then add all the x - and y-components.

Simplifying a Difficult
Problem to Make it an Easy Problem

By resolving all nonperpendicular vectors into right angle components, a difficult problem can be transformed into an easier problem.

Replace $15.0 \mathrm{~m}, 36.9^{\circ}$ with 12 m, East + 9 m, North

Replace $20.0 \mathrm{~m}, 143.1^{\circ}$ with 16 m, West + 12 m, North

Replace $10.0 \mathrm{~m}, 233.1^{\circ}$ with 6 m , West + 8 m , South

The Resultant is the same!

Trigonometric Method of Vector Resolution:
The trigonometric method of vector resolution relies on an understanding of the sine, cosine, and tangent functions.

SOH CAH TOA
Sin $\theta=$ Opposite/Hypotenuse
$\operatorname{Cos} \theta=$ Adjacent/Hypotenuse
Tan $\theta=$ Opposite/Adjacent

A Visual Example

Scale:
Each square is 10 m along its edge.

Vector	\mathbf{x}	\mathbf{y}
A	+20 m	+30 m
B	-10 m	-20 m
C	+20 m	+10 m
Resultant	+30 m	+20 m

$\theta=\tan ^{-1}\left(R_{y} / R_{x}\right)=\tan ^{-1}(20 / 30)=34^{\circ} \mathrm{CCW}$

Procedure for the Analytical Method of Vector Addition

Given 2 or more vectors to be added, use this procedure:

1. Sketch a vector addition diagram (as a quick estimate).
2. Create an $x-y$ table; use trigonometric functions to resolve the given vectors into components.
3. Add all components to determine the components of the resultant (\mathbf{R}). Sketch the resultant with \mathbf{R}_{x} and $\mathbf{R}_{\mathbf{y}}$ shown.
4. Use the Pythagorean theorem to determine the magnitude of the resultant (R).
5. Use a trigonometric function to determine the direction of the resultant (\mathbf{R}).

Example 2

Use the 5-step method above to solve the following vector addition problem.

Add the following vectors:

A: $4.50 \mathrm{~km}, 20.0^{\circ}$
B: $4.20 \mathrm{~km}, 270.0^{\circ}$
C: $6.00 \mathrm{~km}, 210.0^{\circ}$

Vector	x-Component	y-Component
A		
B		
C		
R		

