Solving Angle-Launched Projectile Problems Lesson Notes

What is an Angle-Launched Projectile?

Angle-launched projectiles are objects projected at an angle to the horizontal. Their motion begins with both an x- and y-velocity component.

 Projectiles have no horizontal acceleration and a vertical acceleration of 9.8 m/s/s, ↓.

 $a_x = 0 \text{ m/s/s} a_y = -9.8 \text{ m/s/s}$

• At the highest point (the "peak"), the vertical velocity is 0 m/s.

 $v_{y-peak} = 0 m/s$

Projectiles have the same v_x and v_y values when at the same height.

Problem-Solving Tips and Strategies

Projectile problems must be solved using two sets of kinematic equations. Horizontal and vertical motion parameters must be kept separate from one another.

Horizontal: dx = vox•t

Vertical :	$d_y = v_{oy} \cdot t - 4.9 \cdot t^2$	v _{fy} = v _{oy} - 9.8•t
	$v_{fy}^2 = v_{oy}^2 - 19.6 \cdot d_y$	$d_y = [(v_{oy} + v_{fy})/2] \cdot t$

Strategy:

- 1. Read the problem carefully. Diagram it.
- 2. ID known values; relate to corresponding symbol.
- 3. ID the unknown value; use the variable symbol.
- 4. Select the appropriate equation to use.
- 5. Substitute known values; solve for unknown.

Original Velocity Components

Projectile problems often state the original velocity (v_0) and the angle (θ). Begin by resolving v_0 into x- and y-components (v_{ox} and v_{oy}).

Be careful of what values you enter into equations - v_0 , v_{0x} , v_{0y} . Most kinematic equations require v_{0x} and v_{0y} .

where Θ is the launch angle measured with the ground.

Example 1

A projectile is launched at 32.1 m/s and 52.6° above the horizontal. Determine the time in the air, the horizontal displacement, and the peak height.

Example 1 Summary

Given: v_0 and Θ **Find**: t_{total} , d_x , and d_{y-peak}

- 1. Calculate the x- and y-components of v_0 using ... $v_{0x} = v_0 \cdot \cos \Theta$ $v_{0y} = v_0 \cdot \sin \Theta$
- 2. Calculate t_{up} using ... $v_{fy} = v_{oy} 9.8 \cdot t_{up}$ where $v_{fy} = 0$ m/s
- Calculate total knowing t_{total} = 2•t_{up}
- 4. Calculate d_x using ... $d_x = v_{ox} \cdot t$ where the t is t_{total}
- 5. Calculate dy-peak using ... $d_{y-peak} = [(v_{oy} + v_{fy})/2] \cdot t_{up} \text{ where } v_{fy} = 0 \text{ m/s}$

t_{up}