Resonance in Open-End Air Columns Lesson Notes

Learning Outcomes

- How do you draw the standing wave patterns for the various harmonics of an open-end air column?
- How are the frequencies and wavelengths for the various harmonics related?

Resonance in Strings ... Revisited

For string instruments: at just the right frequency, the reflected pulse off a fixed end interferes with incident pulses such that destructive interference (i.e., **nodes**) always occur at the same locations. Harmonics A frequency that results in a standing wave.

2nd Harmonic

- Nodes are always present at the fixed ends.
- The fundamental frequency (or 1st harmonic) is the frequency that results in the longest possible wavelength.

Open-End Air Columns

- The open ends are anti-nodal positions (AN); air vibrates wildly in and out of the air column.
- Nodes (N) (where air is undisturbed) are located between anti-nodes.

This is the fundamental frequency (1st harmonic):

The above diagram represents a displacement plot.

Standing Wave Patterns for Open-End Air Columns

If the air column is 1.2 m long (L=1.2 m), then ... $\lambda_1 = 2.4 \text{ m}$ $\lambda_2 = 1.2 \text{ m}$ $\lambda_3 = 0.8 \text{ m}$ $\lambda_4 = 0.6 \text{ m}$

Frequency Relationships for Open-End Air Columns

 2^{nd} Harmonic: one-half the λ of 1^{st} Harmonic ... and two times the **f**.

 3^{rd} Harmonic: one-third the λ of 1^{st} Harmonic ... and three times the f.

 4^{th} Harmonic: one-fourth the λ of 1^{st} Harmonic ... and four times the **f**.

If the fundamental frequency is 250 Hz, then ...

 $f_1 = 250 \text{ Hz}$ $f_2 = 500 \text{ Hz}$ $f_3 = 750 \text{ Hz}$ $f_4 = 1000 \text{ Hz}$

Mathematics of Open-End Air Columns

Two general equations for **n**th harmonic:

$\lambda_n = (2/n) \cdot L \qquad f_n = n \cdot f_1$								
Harmonic	Pattern	# of Nodes	# of Antinodes	λ	f	Exam λ (m) -	ples f (Hz)	Based on L = 60 cm
1 st		1	2	λ1	f ₁	1.20	280 ┥	
2 nd	\sum	2	3	λ1/2	2• f ₁	0.60	560	Assume
3 rd	$\sum_{i=1}^{n}$	3	4	λ1/3	3∙ f₁	0.40	840	$f_1 = 280 \text{ Hz}$
4 th		4	5	λ1/4	4∙ f ₁	0.30	1120	\sim
5 th		5	6	λ1/5	5∙ f₁	0.24	1400	
n th		n	n+1	λ1 /n	n• f ₁	1.20/n	280•n	