Determining the Acceleration
 Lesson Notes

Newton's Second Law:
The acceleration of an object is ...

- Directly proportional to the net force that acts upon it, and
- Inversely proportional to the mass of the object, and
- In the same direction as the net force.
- The law is expressed by the equation $a=F_{\text {net }} / \mathrm{m}$

What is Net Force?
The net force is sometimes referred to as the vector sum of all the forces.

As shown at the right, the four forces add up to 15 N , right.
Net force, like any force, is a vector; it has a direction.

$$
F_{\text {net }}=15 \mathrm{~N}, \text { Right }
$$

Example 1:

A 50.0-kg skydiver experiences a 740-Newton air resistance force. Determine her acceleration.

Solution:

Finding the Net Force:

Finding the Acceleration:

Example 2:

A rightward force of 46.8 N is applied to a $4.0-\mathrm{kg}$ object. There is 14.8 N of friction. Determine the acceleration.

Solution:
Finding the Net Force:

Finding the Acceleration:

Example 3:
A 55.8-N tension force is used to pull a 4.50-kg bucket out of a well. Determine the bucket's acceleration.

Solution:
Finding the Net Force:

Finding the Acceleration:

Example 4:

A 410-N rightward force is applied to a $62-\mathrm{kg}$ object. There is 193 N of friction. Determine the acceleration.

Solution:
Finding the Net Force:

Finding the Acceleration:

Example 5:
A 525-N rightward force is applied to a 637-N object. The coefficient of friction is 0.400 .
Determine the acceleration.

Solution:
Finding the Net Force:

Finding the Acceleration:

