Momentum Conservation and Explosion Analysis Lesson Notes

Focus Questions

- What is meant by saying that momentum is conserved in an explosion?
- How do you use the momentum conservation principle to solve Physics word problems involving explosions?

The Law of Momentum Conservation:

For any collision or explosion occurring in an isolated system, the total amount of momentum possessed by objects within the system is conserved (i.e., remains unchanged).

The force propelling the once at-rest carts into motion is an internal force. Thus the carts are part of an isolated system. Total system momentum is conserved in this explosion.

Tennis Ball Cannon Example

Consider a homemade tennis ball cannon that fires a tennis ball forward at high speed. During the explosion, there is an interaction between the cannon and the ball.

The ball experiences a Δ momentum of +100 units.
The cannon experiences a Δ momentum of -100 units.

Lab Cart Example

Explosions, Momentum Conservation, and Proportional Reasoning

 For the after-explosion system momentum of the two carts to be $0, \ldots$.- ... the cart with $1 / 2$ the mass must be moving with twice the velocity.
- ... the cart with $1 / 3$ the mass must be moving with three times the velocity.
- ... the cart with $1 / 4$ the mass must be moving with four times the velocity.

Example Problem 1

A 54-gram tennis ball is at rest inside a 1300-gram stationary tennis ball cannon. The cannon is fired, causing it to recoil backward at $2.3 \mathrm{~m} / \mathrm{s}$. Determine the muzzle velocity of the tennis ball.

Known: $m_{\text {ball }}=54 \mathrm{~g}, m_{\text {cannon }}=1300 \mathrm{~g}, \Delta \mathrm{v}_{\text {cannon }}=-2.3 \mathrm{~m} / \mathrm{s}$
Determine $\mathrm{V}_{\text {ball }}$
Use $m_{\text {ball }} \bullet \Delta \mathrm{v}_{\text {ball }}=-\mathrm{m}_{\text {cannon }} \bullet \Delta \mathrm{v}_{\text {cannon }}$
$(54 \mathrm{~g}) \cdot \Delta \mathrm{v}_{\text {ball }}=-(1300 \mathrm{~g}) \cdot(-2.3 \mathrm{~m} / \mathrm{s})$

$$
\begin{aligned}
& \Delta v_{\text {ball }}=-(1300 \mathrm{~g}) \cdot(-2.3 \mathrm{~m} / \mathrm{s}) /(54 \mathrm{~g}) \\
& \Delta \mathbf{v}_{\text {ball }}=55 \mathrm{~m} / \mathrm{s} \quad \Rightarrow \quad \mathrm{~V}_{\text {ball }}=55 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Example Problem 2

A 62.1-kg male ice skater is facing a 42.8-kg female ice skater, at rest on the ice. They push off each other and move in opposite directions. The female skater moves backwards with a speed of $3.11 \mathrm{~m} / \mathrm{s}$. Determine the post-impulse speed of the male skater.

Known: $\quad m_{\text {male }}=62.1 \mathrm{~kg}, \quad m_{\text {female }}=42.8 \mathrm{~kg}, \quad \Delta \mathrm{v}_{\text {female }}=-3.11 \mathrm{~m} / \mathrm{s}$ Determine $\mathrm{V}_{\text {male }}$

Use $m_{\text {male }} \bullet \Delta \mathrm{V}_{\text {male }}=-\mathrm{m}_{\text {female }} \bullet \Delta \mathrm{V}_{\text {female }}$
$(62.1 \mathrm{~kg}) \cdot \Delta \mathrm{v}_{\text {male }}=-(42.8 \mathrm{~kg}) \cdot(-3.11 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& \Delta \mathrm{V}_{\text {male }}=-(42.8 \mathrm{~kg}) \cdot(-3.11 \mathrm{~m} / \mathrm{s}) /(62.1 \mathrm{~kg}) \\
& \Delta \mathbf{v}_{\text {male }}=2.14 \mathrm{~m} / \mathrm{s} \quad \Rightarrow \quad \mathrm{~V}_{\text {male }}=2.14 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

