How the Eyes See Color Lesson Notes

Learning Outcome

- What are the mechanisms that allow the human eye to see color?

ROYGBIV Spectrum - A Review

The ability to see color is attributed to the fact that the eye is sensitive to a narrow range of wavelengths of the electromagnetic spectrum.

The Eye's Color Receptors

- There's a large concentration of photoreceptors on the back of the eye.
- There are three types of color-sensing cells, known as cones.
- Each type of cone is sensitive to a narrow band of wavelengths of visible light.

- Collectively, these cones give us the ability to see color.

How We See Color

Color is a physiological and psychological response to the wavelengths of light that land on the retina of our eye.

- Blue light $(\lambda=470 \mathrm{~nm}) \Rightarrow$ Blue cone sends a strong signal
- Red light $(\lambda=650 \mathrm{~nm}) \Rightarrow$ Red cone sends a strong signal
- Green light $(\lambda=520 \mathrm{~nm}) \Rightarrow$ Green cone sends the strongest signal
- Yellow light $(\lambda=575 \mathrm{~nm}) \Rightarrow$ Red and Green cones send signals
- White light (ROYGBIV) \Rightarrow All cones send signals to brain

The Color Yellow

To the eye-brain system, there is no difference between yellow light and a combination of equal intensity red + green light.

R and G lights reach retina

Red and green signals sent to brain.
Interpretation: "I'm seeing yellow."

Red and green signals sent to brain.

Interpretation: "I'm seeing yellow."

Incident-Absorbed-Reflected Model

- What color(s) of light shine on an object?
- What color(s) of light are absorbed by the object?
- What color(s) of light are reflected to the eye?

Red Apples

- ROYGBIV is incident on the apple.
- The apple absorbs OYGBIV.
- Red light reflects to the eye.
- The apple appears red.

Yellow Bananas

- ROYGBIV is incident on the banana.
- The banana absorbs ROGBIV.
- Yellow light reflects to the eye.
- The banana appears yellow.

ROYGBIV

