Path Difference and Wavelength Lesson Notes

Learning Outcomes

• What is path difference and how is it related to the wavelength for points on antinodal and nodal lines?

Analyzing the First Antinodal Line (m = 1)

1 st Antinodal Line			
	S ₁ P	S ₂ P	PD
Α	5λ	6λ	1λ
в	3λ	4λ	1λ
С	7λ	6λ	1λ

Analyzing the Second Antinodal Line (m = 2)

2nd Antinodal Line

	S ₁ P	S ₂ P	PD
D	10λ	8λ	2λ
Е	4λ	6λ	2λ

Analyzing the First Nodal Line (m = 0.5)

1st Nodal Line

	S ₁ P	S ₂ P	PD
F	9λ	8.5λ	0.5λ
G	6.5λ	7λ	0.5λ

Analyzing the Second Nodal Line (m = 1.5)

2 nd Nodal Line			
	S ₁ P	S ₂ P	PD
н	7λ	8.5λ	1.5λ
I.	5.5λ	4λ	1.5λ

Data Summary

Line	m	PD
Central Antinodal Line	0	0•λ
1 st Antinodal Line	1	1•λ
2 nd Antinodal Line	2	2•λ
3 rd Antinodal Line	3	3•λ
1 st Nodal Line	0.5	0.5•λ
2 nd Nodal Line	1.5	1.5•λ
3 rd Nodal Line	2.5	2.5•λ

Generalized Equations

For Antinodal Lines:

Path Difference = $PD = m \cdot \lambda$

where m = 0, 1, 2, 3, 4, ... (antinodal line #)

For Nodal Lines:

Path Difference = $PD = m \cdot \lambda$

where m = 0.5, 1.5, 2.5, 3.5, ... (nodal line #)

Making Sense of PD Equations

Antinodal lines are locations where constructive interference occurs; the **path difference** must be a whole number of wavelengths in order for crest to meet crest or trough to meet trough.

Nodal lines are locations where destructive interference occurs; the **path difference** must be a half number of wavelengths in order for a

crest from one source to meet a trough from the other.

