### **Common Misconceptions About Electric Circuits** Lesson Notes

#### Learning Outcomes

- What are common preconceived ideas that cause difficulty understanding circuits?
- What is the essential problem with those ideas? •

#### What Do You Believe?

Often times in Physics it is the ideas we do know that creates a greater barrier to learning than the ideas that we don't know. What pre-conceptions do you have regarding circuits? Identify the following statements as being True (T) or False (F).

### **Statement**

- T or F a. When an electrochemical cell no longer works, it is out of charge and must T or F
- be recharged before it can be used again. b. An electrochemical cell can be a source of charge in a circuit. The charge T or F that flows through the circuit originates in the cell.
- c. Charge becomes used up as it flows through a circuit. The amount of charge T or F that exits a light bulb is less than the amount that enters the light bulb.
- d. Charge flows through circuits at very high speeds. This explains why the light T or F bulb turns on immediately after the wall switch is flipped.
- The local electrical utility company supplies millions and millions of electrons T or F to our homes everyday.

## **A Bad Starting Point**

Let's suppose:

- An electrochemical cell is re-chargeable.
- Recharging: restoring/replenishing lost or used up charge.



The above thought pattern is a perfectly logical extension of these two suppositions yet ... all three claims all contrary to the model of electric circuits presented in our Tutorial Series.

# **More Wrong Turns**



#### **Batteries are NOT Rechargeable**

- Rechargeable batteries can be bought in stores, used, placed in devices known as re-chargers, and have their lifespan increased. What's so bad about that?
- If "rechargeable" means having the lost and expended charge replenished/restored, then it's a real rip-off ... at least to the Physics student trying to learn Physics.
- Circuits don't consume or destroy or diminish charge!
- If the amount of charge in a circuit is never changing, then why would one ever need to replenish it
- If re-chargers don't re-charge, let's not call them re-chargers!

# It's All About Energy

- The cell supplies the energy to pump the charge from low potential to high potential. This motion is against the E field and requires work.
- The electrical energy of moving charge is transformed by the load (bulb, motor, heater, etc.) into non-electrical forms. The charge leaves the load less energized than it entered. It needs an energy boost.
- As reactants in the electrochemical cell become depleted, the cell no longer has energy-producing ability.

## Some Batteries (Cells) Are Reversible

The cells we call re-chargeable would best be called **reversible**. They have the ability to be reversed.

#### When Using the Device/Cell

Reactant Chemicals ⇒ Product Chemicals + Energy

Energy makes the device work.

# During "Re-charging"

Product Chemicals + Energy >> Reactant Chemicals

Energy is supplied by the outlet.

**Reversing** or **re-energizing** would be a much better name for the process that we call recharging.







## **Two Models of Chare Flow**

|    | Preconceived Ideas                                                               | Your Physics Teacher's Model                                                               |
|----|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 1. | A cell that no longer works is out of charge.                                    | A cell that no longer works is out of energy-<br>producing reactants.                      |
| 2. | A cell is a source of charge. The charge that flows originates in the cell.      | A cell is a source of energy. It pumps the charge that is already present in wires.        |
| 3. | Charge becomes used up as it passes through circuit elements.                    | Electrical energy is transformed to other forms by circuit elements.                       |
| 4. | Charge moves at high speeds, lighting bulbs instantaneously.                     | Charge moves slowly; its motion begins instantly leading to instant lighting.              |
| 5. | The utility company supplies millions of e <sup>-</sup> s to our homes each day. | Utility companies don't supply e <sup>-</sup> s; they supply millions of Joules of energy. |