Combination Circuits
 Lesson Notes

Learning Outcomes

- What are the main mathematical patterns and relationships associated with combination circuits?
- How can one analyze such circuits?

What is a Combination Circuit?

A combination circuit includes devices that are connected by a combination of series and parallel connections.

Series: A, B Parallel: C, D

Series: A, B Parallel: C, D

Series: A Parallel: B, C

Equivalent Resistance

The collection of resistors act together to create an overall total resistance known as the equivalent resistance ($\mathrm{Req}_{\mathrm{eq}}$).

For series connections: $\mathbf{R}_{\text {eq }}=R_{1}+R_{2}+R_{3}+\ldots$

For parallel connections: $\quad 1 / R_{\text {eq }}=1 / R_{1}+1 / R_{2}+1 / R_{3}+\ldots$

Req for a Combination Circuit

The equivalent resistance of a combination circuit can be determined by reducing groups of resistors to a single resistance in a stepwise fashion, beginning with the branched resistors.

Voltage Drops ($\Delta \mathrm{V}$)

- For the branched resistors (R_{1} and R_{2}), the voltage drop is the same. So $\Delta V_{1}=\Delta V_{2}$.
- For all resistors, the voltage drop can be calculated using $\Delta V=I \cdot R$. So ...

$$
\Delta V_{1}=\mathrm{I}_{1} \cdot \mathrm{R}_{1} \quad \Delta \mathrm{~V}_{2}=\mathrm{I}_{2} \cdot \mathrm{R}_{2} \quad \Delta \mathrm{~V}_{3}=\mathrm{I}_{3} \cdot \mathrm{R}_{3} \quad \text { etc. }
$$

- Counting the branches as a single drop, the sum of all
 voltage drops equals the battery voltage.
- For the given circuit: $\Delta V_{\text {battery }}=\Delta V_{\text {branches }}+\Delta V_{3}+\Delta V_{4}$

Current (I)

For combination circuits:

- The current in the battery is the same as the current in every resistor located outside the branches. For the given circuit: Ibattery $=I_{3}=I_{4}$
- The current outside the branches is equal to the sum of the branch currents. For the given circuit: Ibattery $=I_{1}+I_{2}$

- For any resistor, the current can be calculated using $\Delta \mathrm{V}=$ I•R. So ... $I_{1}=\Delta V_{1} / R_{1} \quad I_{2}=\Delta V_{2} / R_{2} \quad I_{3}=\Delta V_{3} / R_{3} \quad$ etc.
- Branches having equal resistance will have equal current values.

Examples

Analyze the following two combination circuits. Fill in all blanks.

$$
\begin{aligned}
& \mathrm{I}_{\text {batery }}=\square \\
& \Delta \mathbf{V}_{1}=\square \\
& \Delta \mathbf{V}_{2}=\square \\
& \Delta \mathbf{V}_{3}=\square \\
& \Delta \mathbf{V}_{4}=
\end{aligned}
$$

$$
\mathrm{R}_{\mathrm{eq}}=
$$

$$
I_{\text {batory }}=
$$

\qquad

$$
\Delta \mathbf{V}_{1}=
$$

\qquad

$$
\Delta \mathbf{V}_{2}=
$$

$$
\Delta V_{3}=
$$

\qquad

$$
\Delta \mathbf{V}_{4}=
$$

