Satellite Motion Mathematics Lesson Notes

Learning Outcomes

- What are the important formulas that describe the speed, acceleration, force, and period for satellites?
- How are the formulas used?

Orbital Speed Derivation

An orbiting satellite having a mass of M_{sat} experiences a net force of $M_{sat} \cdot v^2/R$. This net force is supplied by gravity and given by the expression $G \cdot M_{sat} \cdot M_{central}/R^2$. The v is the orbital speed, the R is the orbital radius, and the $M_{central}$ is the mass of the central body that is being orbited.

Making Sense of Orbital Speed

From the orbital speed equation: $v = \sqrt{(G \cdot M_{central}/R)}$

One would conclude that the speed of an orbiting satellite is independent of the satellite's mass and only dependent upon the radius of orbit (\mathbf{R}) and the mass of the body being orbited.

- Increase planet mass \Rightarrow increase orbital speed (**v**).
- Increase orbital radius \Rightarrow decrease orbital speed (**v**).
- Double planet mass \Rightarrow increase **v** by a factor of $\sqrt{2}$.
- Triple planet mass \Rightarrow increase **v** by a factor of $\sqrt{3}$.
- Double radius of orbit \Rightarrow decrease **v** by a factor of $\sqrt{2}$
- Triple radius of orbit \Rightarrow decrease **v** by a factor of $\sqrt{3}$.
- Change satellite mass \Rightarrow No effect upon **v**.

Orbital Acceleration and Force

The acceleration and net force experienced by a satellite is the acceleration caused by gravity and the force of gravity.

Since a satellite moves in a circular path (or close to it), all circular motion equations apply to satellites.

Orbital Period

The **period** (T) is dependent upon the mass of the central body ($M_{central}$) and the radius of orbit (R): T² / R³ = (4• π^2) / (G• $M_{central}$)

The above equation can be rearranged to: $T = \sqrt{[(4 \cdot \pi^2) / (G \cdot M_{central}) \cdot R^3]}$

Circular motion equations can also be used to calculate the period: $T = 2 \cdot \pi \cdot R/v$

Equation Summary

Period (T)	Speed (v)	Acceleration (a)	Net Force (F _{net})
T = $\sqrt{[(4• π2) / (G• Mcentral)•R3]}$	v = √ (G•M _{central} /R)	a = G•M _{central} /R ²	F = G•M ^{gray} c•M _{sat} /R ²
T = 2•π•R/v	v = 2•π•R/T	a = v²/R	F _{net} = m∙a
	v = √ a•R	a = F _{net} /m	F _{net} = m•v ² /R

Show solutions to the three Example Problems discussed on Slides 8, 9, and 10:

Example Problem 1

A satellite orbits the earth at a height of 100 km (approximately 60 miles) above the surface. Determine the speed, acceleration and orbital period of the satellite. (Given: $M_{earth} = 5.97 \times 10^{24} \text{ kg}$, $R_{earth} = 6.37 \times 10^{6} \text{ m}$)

Example Problem 2

The period of the moon is approximately 27.2 days (2.35 x 10^6 s). Determine the radius of the moon's orbit and the orbital speed of the moon. (Given: $M_{earth} = 5.97 \times 10^{24}$ kg)

Example Problem 3

Saturn has many moons. The moon Mimas orbits with an average radius of 1.87×10^8 m. The average orbital period of Mimas is approximately 23 hours (8.28×10^4 s). Determine the mass of Saturn from this information.