Mathematics of Circular Motion

Lesson Notes

Learning Outcomes

- What are the main formulas used in circular motion problems?
- How can the formulas be used to solve problems?

Formulas for v, a, and F_{net}

The three quantities of primary interest are speed (v), acceleration (a), and net force (F_{net}).

Speed (v):
$$v = d / t$$
 $v = 2 \cdot \pi \cdot R/T$ $T = \text{period}$ $T =$

Using Circular Motion Equations

Physics equations have two primary uses in a Physics course:

- 1. Equations as a Guide to Thinking ...
 - ... about how a change in one quantity would affect a second quantity.

For instance, if the speed is doubled or halved, what effect would this have on other quantities such as the acceleration or the net force.

2. Equations as Algebraic Recipes for Problem Solving

For instance, if values of m, R, and T are known, calculate the values of the speed, acceleration and net force.

Use the video to work through the solutions to the five examples that are given.

Example 1 - Equations as a Guide to Thinking

A car rounding a corner has an acceleration of 4.2 m/s/s. If it rounds the same corner at twice the speed, what would be its new acceleration?

Example 2 - Equations as a Guide to Thinking

A car rounding a corner has an acceleration of 4.2 m/s/s. If it rounds a corner with twice the radius at the same speed, what would be its new acceleration?

A roller coaster car rounding a corner has a net force of 4500 N. If the car had three times the mass and rounded a different corner with two times the radius and at twice the speed, then what would be the new net force?

Example 4 - Equations as an Algebraic Recipe

A 920-kg car moving at 16 m/s takes a turn around a circle with a radius of 32 m. Determine the acceleration and the net force acting upon the car.

Example 5 - Equations as an Algebraic Recipe

A 95-kg halfback makes a turn on the football field. The halfback sweeps out a path that is a portion of a circle with a radius of 12-meters. The halfback makes a quarter of a turn around the circle in 2.1 seconds. Determine the speed, acceleration and net force acting upon the halfback.