Video Notes for Solving Fnet $=\mathbf{m} \cdot \mathbf{a}$ Problems

Example Problem:

A 27.6-N rightward force is applied to accelerate a $4.80-\mathrm{kg}$ box across the floor ($\mu=$ $0.285)$. Fill in all the blanks and determine the acceleration of the box.

Central Questions:

- How do you use the Newton's Second Law equation to analyze and solve for acceleration?

$$
\begin{gathered}
\mathrm{m}=4.80 \mathrm{~kg} \\
\mathrm{a}=? ? ? \\
\mathrm{~F}_{\mathrm{net}}=? ? ?
\end{gathered}
$$

Newton's Second Law Equation:
The Newton's Second Law expresses the relationship between acceleration (a), net force ($F_{\text {net }}$), and mass (m).

$$
F_{n e t}=m \cdot a
$$

Important Mathematical Relationships

1. The net force is the combined effect of all individual forces. It is often determined from a force diagram. In this diagram, the up and down cancel each other's effect. But the right force is 25 N larger than the left force. So $F_{n e t}$ is 25 N ; it's direction is to the right.

2. The down force can be calculated using the equation $F_{\text {grav }}=\mathrm{m} \cdot \mathrm{g}$ where $\mathrm{g}=9.8 \mathrm{~N} / \mathrm{kg}$.

$$
F_{\text {net }}=25 \mathrm{~N}
$$

3. Vertical forces balance when there is no vertical acceleration. This allows you to equate the up force with $F_{\text {grav. }}$
4. The force of friction ($\mathrm{F}_{\text {frict }}$) can be calculated from the normal force ($\mathrm{F}_{\text {norm }}$) and the coefficient of friction (μ) using $F_{\text {frict }}=\mu \cdot F_{\text {norm }}$.

Two Types of Problems:

Type 1:

Given: mass and individual force values.
Calculate: Acceleration
Strategy: Use force values to calculate Fnet. Then use Newton's Second Law equation to calculate acceleration.

Type 2:

Given: mass, acceleration, and some force values
Calculate: an unknown force value
 force values.

Type 1 Example: Solving for Acceleration A $27.6-\mathrm{N}$ rightward force is applied to accelerate a $4.80-\mathrm{kg}$ box across the floor ($\mu=0.285$). Fill in all the blanks and determine the acceleration of the box.

$$
F_{\text {grav }}=(4.80 \mathrm{~kg}) \cdot(9.8 \mathrm{~N} / \mathrm{kg})=47.0 \mathrm{~N}
$$

Since vertical forces balance:

$$
\begin{aligned}
& F_{\text {norm }}=F_{\text {grav }}=47.0 \mathrm{~N} \\
& F_{\text {trict }}=\mu \cdot F_{\text {norm }}=(0.285) \cdot(47.0 \mathrm{~N})=13.4 \mathrm{~N} \\
& \mathrm{~F}_{\text {net }}=27.6 \mathrm{~N}-13.4 \mathrm{~N}=14.2 \mathrm{~N}, \rightarrow \\
& \mathrm{a}=\mathrm{F}_{\text {net }} / \mathrm{m}=(14.2 \mathrm{~N}) /(4.80 \mathrm{~kg})=2.96 \mathrm{~m} / \mathrm{s}^{2}, \rightarrow
\end{aligned}
$$

Type 2 Example: Solving for Individual Force

 A rightward force is applied to accelerate a 24.6 kg box across the floor ($\mu=0.461$) with a rightward acceleration of $1.39 \mathrm{~m} / \mathrm{s}^{2}$. Fill in all the blanks and determine the applied force value.$$
F_{\text {grav }}=(24.6 \mathrm{~kg}) \cdot(9.8 \mathrm{~N} / \mathrm{kg})=241 \mathrm{~N}
$$

Since vertical forces balance:

$$
F_{\text {norm }}=F_{\text {grav }}=241 \mathrm{~N}
$$

$$
F_{\text {frict }}=\mu \cdot F_{\text {norm }}=(0.461) \cdot(241 \mathrm{~N})=11 \mathrm{~N}
$$

$$
F_{\text {net }}=m \cdot a=(24.6 \mathrm{~kg}) \cdot\left(1.39 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

$$
F_{\text {net }}=34 \mathrm{~N}, \rightarrow
$$

$$
F_{\text {app }}=F_{\text {frict }}+F_{\text {net }}=111 \mathrm{~N}+34 \mathrm{~N}=145 \mathrm{~N}
$$

What if There are 3 Forces?

The leftward force is not balanced. It is equal to the net force ($\mathrm{F}_{\text {net }}$).
This simplifies the math.

$\mathrm{m}=4.80 \mathrm{~kg}$
$a=$ \qquad
$F_{\text {net }}=$ \qquad

$$
\begin{gathered}
\mathrm{m}=24.6 \mathrm{~kg} \\
\mathrm{a}=1.39 \mathrm{~m} / \mathrm{s}^{2}, \rightarrow \\
\mathrm{~F}_{\text {net }}= \\
\hline
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{m}=4.80 \mathrm{~kg} \\
\mathrm{a}= \\
\mathrm{F}_{\text {net }}=
\end{gathered}
$$

