All Rights Reserved

Fnorm ???

F<sub>gray</sub> = ???

m = 4.80 kg

a = ???

F<sub>net</sub> = ???

??? = F<sub>frict</sub>

 $\mu = 0.285$ 

# Video Notes for Solving Fnet = m·a Problems

# **Example Problem:**

A 27.6-N rightward force is applied to accelerate a 4.80-kg box across the floor ( $\mu$  = 0.285). Fill in all the blanks and determine the acceleration of the box.

# **Central Questions:**

 How do you use the Newton's Second Law equation to analyze and solve for acceleration?

# Newton's Second Law Equation:

The Newton's Second Law expresses the relationship between acceleration (a), net force ( $F_{net}$ ), and mass (m).

#### Fnet = m·a

#### **Important Mathematical Relationships**

- The net force is the combined effect of all individual forces. It is often determined from a force diagram. In this diagram, the up and down cancel each other's effect. But the right force is 25 N larger than the left force. So F<sub>net</sub> is 25 N; it's direction is to the right.
- The down force can be calculated using the equation F<sub>grav</sub> = m·g where g = 9.8 N/kg.
- Vertical forces balance when there is no vertical acceleration. This allows you to equate the up force with F<sub>grav</sub>.
- 4. The force of friction ( $F_{\text{frict}}$ ) can be calculated from the normal force ( $F_{\text{norm}}$ ) and the coefficient of friction ( $\mu$ ) using  $F_{\text{frict}} = \mu \cdot F_{\text{norm}}$ .

# Two Types of Problems:

#### Type 1:

**Given**: mass and individual force values. **Calculate**: Acceleration **Strategy**: Use force values to calculate F<sub>net</sub>. Then use Newton's Second Law equation to calculate acceleration.

# Type 2:

**Given**: mass, acceleration, and some force values **Calculate**: an unknown force value **s**: Use m and a to calculate F<sub>net</sub>. Then calculate unknown force using F<sub>net</sub> and other force values.





# Type 1 Example: Solving for Acceleration

A 27.6-N rightward force is applied to accelerate a 4.80-kg box across the floor ( $\mu = 0.285$ ). Fill in all the blanks and determine the acceleration of the box.

 $F_{grav} = (4.80 \text{ kg}) \cdot (9.8 \text{ N/kg}) = 47.0 \text{ N}$ Since vertical forces balance:  $F_{norm} = F_{grav} = 47.0 \text{ N}$  $F_{frict} = \mu \cdot F_{norm} = (0.285) \cdot (47.0 \text{ N}) = 13.4 \text{ N}$  $F_{net} = 27.6 \text{ N} - 13.4 \text{ N} = 14.2 \text{ N}, \rightarrow$  $a = F_{net}/m = (14.2 \text{ N})/(4.80 \text{ kg}) = 2.96 \text{ m/s}^2, \rightarrow$ 



# Type 2 Example: Solving for Individual Force

A rightward force is applied to accelerate a 24.6kg box across the floor ( $\mu = 0.461$ ) with a rightward acceleration of 1.39 m/s<sup>2</sup>. Fill in all the blanks and determine the applied force value.

$$\begin{split} F_{grav} &= (24.6 \text{ kg}) \cdot (9.8 \text{ N/kg}) = 241 \text{ N} \\ \text{Since vertical forces balance:} \\ F_{norm} &= F_{grav} = 241 \text{ N} \\ F_{frict} &= \mu \cdot F_{norm} = (0.461) \cdot (241 \text{ N}) = 11 \text{ N} \\ F_{net} &= m \cdot a = (24.6 \text{ kg}) \cdot (1.39 \text{ m/s}^2) \\ F_{net} &= 34 \text{ N}, \rightarrow \\ F_{app} &= F_{frict} + F_{net} = 111 \text{ N} + 34 \text{ N} = 145 \text{ N} \end{split}$$

# What if There are 3 Forces?

The leftward force is not balanced. It is equal to the net force  $(F_{net})$ .

This simplifies the math.



m = 24.6 kg  
a = 1.39 m/s<sup>2</sup>, →  
$$F_{net} =$$
\_\_\_\_\_



This document should not be published on other websites besides www.physicsclassroom.com.